
70
Таврійський науковий вісник № 3

UDC 004.428
DOI https://doi.org/10.32782/tnv-tech.2024.3.8

ADVANTAGES AND RISKS OF USING OPEN-SOURCE LIBRARIES
IN COMMERCIAL DEVELOPMENT

Khambir V. R. – Master,
Principal Software Engineer, CapitalOne, USA
ORCID ID: 0009-0008-6812-2422

In the evolving landscape of digital libraries, the integration of Open-Source Software (OSS)
presents a compelling avenue for enhancing service efficiency while curbing operational costs.
This paper delves into the alignment of open-source principles with the foundational goals of
libraries, underscoring the pivotal role of OSS in democratizing access to information and
safeguarding intellectual property. Amidst the plethora of software options available for library
management, the paper emphasizes the necessity of discerning the suitability of OSS for digital
library applications, a decision critical to the continued growth and success of the open-source
paradigm. The research extends beyond previous studies by offering a nuanced exploration of the
functional and commercial benefits and drawbacks of OSS as perceived by management within
the ESSS sector. It highlights the technical merits of OSS, such as enhanced reliability, security,
and performance, attributed to the ability to scrutinize and modify the source code–advantages
that notably surpass those offered by proprietary counterparts. The study also identifies parallel
gains in the business domain, including the avoidance of vendor lock-in and the fostering of
collaboration and innovation, which resonate with the technical benefits. The investigation
reveals that certain technical challenges previously associated with OSS, such as compatibility
issues and user-friendliness, do not pose significant obstacles for practitioners. Conversely, the
study uncovers that the business disadvantages linked to OSS, although mirroring the technical
concerns, present more substantial hurdles. In conclusion, the paper contributes a comprehensive
assessment of the advantages and risks associated with the adoption of OSS in commercial
development, offering valuable insights for practitioners and decision-makers in the realm of
digital library services. It underscores the importance of balancing the technical and commercial
considerations to harness the full potential of OSS, thereby shaping a future where open-source
solutions are integral to the infrastructure of information access and preservation.

Key words: Open-source software, Libraries, Commercial Development, Software
Management.

Хамбір В. Р. Переваги та ризики використання бібліотек із відкритим вихідним
кодом (open-source) у комерційній розробці

В еволюції цифрових бібліотек інтеграція програмного забезпечення з відкритим вихід-
ним кодом (OSS) представляє переконливий шлях для підвищення ефективності обслугову-
вання при скороченні операційних витрат. У цій статті розглядається узгодження прин-
ципів відкритого коду з основними цілями бібліотек, підкреслюється ключова роль OSS
у демократизації доступу до інформації та захисті інтелектуальної власності. Серед
великої кількості варіантів програмного забезпечення, доступних для управління бібліоте-
ками, у статті наголошується на необхідності визначення придатності OSS для програм
цифрових бібліотек, рішення, яке має вирішальне значення для подальшого зростання
та успіху парадигми відкритого коду. Дослідження виходить за рамки попередніх дослі-
джень, пропонуючи детальне дослідження функціональних і комерційних переваг і недо-
ліків OSS, як їх сприймає керівництво в секторі ESSS. У ньому висвітлюються технічні
переваги OSS, такі як підвищена надійність, безпека та продуктивність, що пояснюється
можливістю ретельного вивчення та модифікації вихідного коду – переваги, які значно
перевершують ті, що пропонуються запатентованими аналогами. Дослідження також
визначає паралельні переваги в бізнес-сфері, включаючи уникнення прив’язки до поста-
чальника та сприяння співпраці та інноваціям, які перегукуються з технічними перева-
гами. Розслідування показує, що певні технічні проблеми, які раніше були пов’язані з OSS,
такі як проблеми сумісності та зручності користувача, не становлять значних перешкод
для практиків. Навпаки, дослідження показує, що недоліки бізнесу, пов’язані з OSS, хоча
й відображають технічні проблеми, представляють більш значні перешкоди. Підсумову-
ючи, у статті міститься всебічна оцінка переваг і ризиків, пов’язаних із впровадженням

71
Комп’ютерні науки та інформаційні технології

OSS у комерційну розробку, пропонуючи цінну інформацію для практиків і осіб, які при-
ймають рішення у сфері цифрових бібліотечних послуг. Це підкреслює важливість зба-
лансування технічних і комерційних міркувань для використання повного потенціалу OSS,
тим самим формуючи майбутнє, де рішення з відкритим кодом є невід’ємною частиною
інфраструктури доступу до інформації та її збереження.

Ключові слова: програмне забезпечення з відкритим вихідним кодом, бібліотеки,
комерційна розробка, управління програмним забезпеченням.

Introduction. Open-Source Software (OSS) gives libraries efficient solutions to
reduce the cost of their services. The remarkable similarities between the goals of open-
source and libraries highlight the significance of using free and OSS in libraries. The
libraries provides free services to all community members; it does not seek financial gain
but rather to protect the intellectual property of literature owners and grant new rights to
deserving authors. Additionally, it seeks to help people access information that is beyond
their reach and that they would not otherwise be able to obtain. It is currently impossible
to ignore the use of OSS in libraries. With so many software programs available to handle
every aspect of libraries operations, it is important to determine which of these programs
are appropriate for usage in digital libraries. Determining early success is critical to the
open-source movement's sustained development and expansion [1].

Definitions. Let's define the terms for the discussion as follows:
"Open Source" refers to a style of software licensing in which the program's source code

is usually made accessible to users free of charge, with conditions that permit addition,
modification, and redistribution–though sometimes with certain limitations. A variety of
organizations may offer the software's support, training, upgrades, and other services,
increasingly through commercial agreements. Open-source software is frequently, though
not always, created via teamwork, with several people contributing different parts of the
finished product. Software companies are increasingly donating in-house projects and
compensated programming time to the free software community [2].

"Commercial Software" refers to the paradigm in which software created by a business
is normally licensed in object, binary, or executable code to a client (either personally
or via channels) for a charge. The business frequently offers consumers the assistance,
instruction, upgrades, and other services of a similar kind that they require in order to
utilize the program effectively. The software's source code is typically not disseminated
to everybody and may only be replicated or modified in accordance with the procedures
specified in such agreements. However, it could be made readily accessible to specific
users of the application under special licenses or other arrangements [3].

Every one of these software models has the potential to become a successful business
plan for software firms and provide tangible benefits to clients. Businesses are rapidly
figuring out how to accept both models and let them coexist as they are not mutually
exclusive. Some proprietary operating systems platforms, for instance, have profited
from open-source development by embracing an open-source strategy for the system's
lower tiers (like device drivers) while maintaining private features for the higher tiers
(like the user interface). With this strategy, more attention can be paid to the design
of the more advanced elements, where innovation may benefit clients more broadly.
On the other hand, some software developers have given their commercially produced
software to the open-source industry so that open-source solutions may run across
more platforms. The IT ecosystem has benefited greatly from increased rivalry and a
greater variety of competitively priced servers and desktop platform options. Software
companies concentrate on and significantly improve on new challenges such resolving
security and dependability concerns, as software solutions continue to advance [4].

72
Таврійський науковий вісник № 3

Understanding open-source and commercial software. Both commercial and
OSS techniques have advantages and disadvantages of their own, and depending on the
context in which they are used, they may provide users a variety of benefits with trade-
offs. Commercial off-the-shelf software products have been on the market for a long
time, providing users with a large range of computer features and enormous productivity
improvements. Larger enterprises' complicated business running requirements, which
generic off-the-shelf products might not be able to sufficiently fulfill, have also been
satisfied by customized commercial software solutions. Commercial software providers
are always working to create products that are user-friendly, highly functional, and
responsive to client requests, Value for funds and reinforced by a services ecosystem in
response to the needs of clients who might not be technologically inclined and prefer
hassle-free problem solving. For many years, open-source license has been around,
mostly at academic and research institutions. Due to the commercial support or corporate
backing of OSS in the market, it has garnered more attention in the recent past [5].

Customers now have access to a large variety of software options and providers,
even in markets where there have historically been few rival solutions. Because it
permits them to freely copy, alter, and subsequently redistribute the source code, some
people choose open source. People who desire to change the program source code
are drawn to features like these, for instance, in environments where a great level of
customization can be necessary or in educational environments where experimenting
is the main goal [5].

Being involved in a software development community may help members form
collaborations and exchange ideas, which can help them forge important connections
with developers outside of their own organizations. Through official and informal
sharing, developers of both commercial and open-source software strive to establish
these communities. Open standards, which are not to be confused with open-source
software, are adopted by both user and developer communities because they may
quickly improve interoperability [3, 4].

Users of software today have more alternatives at their disposal. User settings
frequently employ a combination of commercial and open-source software platforms
and apps to satisfy various needs. The rivalry amongst software suppliers has increased
the software industry's responsiveness to customer requirements, which ultimately
benefits customers by offering them more alternatives and more affordable solutions.
We will study commercial and OSS from three angles: development, licensing, and
business in order to gain a deeper understanding of both models [4].

Business. Businesses are able to continue because they make money from what
they do. Profit margins are the main metric used by shareholders to assess company
success. Although the business strategies of companies that sell commercial and open-
source software differ somewhat, both types of companies need to figure out how to
generate steady income. The economic viability of developing software only for its own
sake is questionable. Since commercial software companies rely on customers licensing
their product, they concentrate on the features, functionality, and innovation of their
software in order to fulfill the demands of their clients. When new software releases
offer enhanced features, functionality, and value, customers buy the updated versions.
This incentive creates a huge flow of funding for research and development into new
software, which leads to increased productivity, decreased operating costs, and new
learning resources [6].

The hardware and support services that open-source manufacturers bundle around
open-source software and charge for are how they make money. For example, several

73
Комп’ютерні науки та інформаційні технології

businesses sell OSS packaged with their server or personal computer hardware. The
businesses offer this hardware and charge extra for the services they render to make their
hardware and software compatible. A further illustration would be a system integrator
that generates income by developing unique solutions for clients with pre-existing OSS
as a foundation, and billing the clients for the time and materials needed to make the
adjustments required to satisfy the particular needs of the user. An alternative business
strategy involves making an open-source program available for free download and
turning the user base into paying clients for a fully functional version. In some cases,
combining development resources to support an emerging technology may offer an OSS
provider rigid indirect revenue or advantages, such as through the sale of their hardware
and/or commercial software that is offered in addition to the OSS [7].

Development. The methodology used in software development is another element
that has historically set open-source and commercial software apart. This is accelerating
in evolution and convergence as elements of one model are incorporated into the other.
Traditionally, the major code development utilized by commercial software development
teams has taken place inside the boundaries of a single business or unit. When it comes
to open-source development, there is usually a framework in place to allow for the
participation of several stakeholders. This duality is merging into a single developmental
model. Commercial teams of software developers nowadays have created frameworks
for working together to produce software with teams located all over the world.

Additionally, there are OSS solutions developed by a single business or programmers
supported by for-profit companies. Only one or two major contributors keep these
open-source systems up to date. The fundamental development process shared by
both commercial and open-source development methodologies is iteration–design,
standards, coding, testing, release, and feedback. A core group of programmers creates
the application and distributes it to the community for early testing. After using the
application, the beta testers notify the programmers of any flaws and suggested fixes.
Before the application is made publicly available, the programmers make changes to the
source code to address the issues found [8].

A suitable framework that supports the creation of software by several teams or
contributors and their varied viewpoints can speed up innovation, optimization,
vulnerability-fixing, and time to market, according to years of experience in the field.
Such frameworks are used in many of today's software development projects by both
commercial and open-source software development teams. Both the open-source
and commercial development platforms help programmers advance their personal
development and skill sets. For many years, fundamental ideas in computer science
have been presented in textbooks. Since these texts are regularly updated, students have
access to an abundance of published material.

Over a long time since applications was first written, traditional education techniques
based on such literature have created proficient developers. The secret is not that students
have access to source code that they can simply copy from, but rather that professors and
educators are good in imparting significant concepts to students in a way that teaches
them how to develop their own code to implement those concepts. When they tackle
challenging or complicated challenges, skilled programmers can become recognized
for their personal contribution to software development, regardless of whether they are
using commercial or open-source software models [9].

Licensing. The licensing of software is the most fundamental distinction between
both the open-source and commercial software models. Commercial software providers
usually follow the conventional software licensing model, in which a consumer pays

74
Таврійський науковий вісник № 3

a price to use the program. Generally, the license only allows the consumer to use,
copy, or modify the program in accordance with its conditions. The freedom to alter and
redistribute the program are among the common characteristics of OSS, which is made
accessible under a range of license schemes. As with commercial software, the license
agreement is based on the copyright included in the software. Permissions and rights are
given with certain restrictions.

Generally speaking, these terms limit the software's future modifications and
distribution options rather than demanding payment for the program. The Berkeley
Software Distribution (BSD) License7 and the GNU General Public License (GPL)6
are the two main methods of licensing open-source software. All software derivatives
and later iterations must be licensed and distributed under the same conditions as the
original program under the GPL. The GPL-covered source code is perpetually covered
by the GPL. The creators of the GPL intended for it to be perpetual, which limits the
ways in which developers working on GPL software can create, distribute, or market
goods utilizing GPL source code. Developers may also encounter other difficulties,
such as figuring out if software created on a GPL platform for software qualifies as a
derivative work covered by the GPL [10].

Open-source Digital libraries Software. "Linux is a cancer that adheres itself
to anything it touches in the sense of intellectual property." Ballmer cited Linux as
an example of a program that makes use of the GNU General Public License (GPL),
which is owned by the Free Software Foundation. His major "issue" was that, if
open-source software is utilized in the creation of new software, the GPL requires
the software developer to make their code publicly available as well. Not to add that
the GPL went into effect in 2007, which allayed Ballmer's worries about the updated
version. Microsoft's aversion to open-source software reversed course in the 2010s
and they began to support this new strategy. This is just one example, but since it
concerns Microsoft's perspective, it's an important one. Further details on the increasing
popularity of open-source software will be provided in the paper's following part.
This will lead to a detailed explanation of the numerous benefits and drawbacks of
adopting OSS at a business level. The firms that utilize open-source software and the
circumstances in which using OSS makes sense are covered in the subsequent sections.
The businesses included in this section are essential to the creation and upkeep of the
OSS that drives modern commerce [11, 12].

Microsoft. As was previously indicated in the report, Microsoft was the firm that
resisted open-source software the most, but they have now changed their stance and
begun to support it. Microsoft had the most workers that contributed to GitHub projects
compared to other companies in 2016. It now collaborates with other top open-source
businesses like Red Hat. Several of its most well-known programs, such as the CNTK
deep learning toolkit, TypeScript, Redis, Visual Studio Code, PowerShell Code, and
.NET development tools, were also made available as open-source projects. Along
with supporting Linux on its web-based computing service, it develops software across
several platforms [13].

IBM. One of the main companies that contributed to the Linux kernel was IBM.
It also established and contributed to several other open-source projects, including
OpenWhisk, Project Intu, and LoopBack. Most recently, it published the WebSphere
Liberty project under the Eclipse Public License. Additionally, IBM sponsors or is
a member of several prominent open-source foundations, such as the OpenStack
Foundation, the Apache Software Foundation, the Eclipse Foundation, and the Linux
Foundation [14].

75
Комп’ютерні науки та інформаційні технології

Intel. With a 12.9% contribution percentage to the Linux kernel in 2016, Intel
was the corporation most actively involved in kernel development. It also sponsors
and participates in a number of open-source foundations, including as the OpenStack
Foundation, the Eclipse Foundation, and the Linux Foundation, just like IBM does [15].

Google has published more than 2000 open-source projects and made contributions
to them. On the list of the top GitHub contributors in 2016, it was ranked sixth. Angular,
which ranked fourth on the same list, is also owned by Google. Google has several
well-known open-source projects, including TensorFlow, Android, Kubernetes, Dart,
and Chromium [16].

Facebook. In 2016, Facebook rose to prominence as a provider of open-source
hardware and software, with the second-highest GitHub contributor count. Its most well-
known open-source initiatives are Relay, Flow, HHVM, and the JavaScript development
tools for React and React-native. [8] 4.6 Docker with over 8 billion downloads, the Docker
containerization technology has become one of the most popular open-source projects for
business customers and has emerged as one of GitHub's most downloaded repositories.
Docker software is particularly popular among firms employing agile and DevOps
methodologies, and the company states, "On average, companies utilizing Docker report a
7X boost in the number of times they're capable of shipping software [17].”

Adobe. With more than 250 publicly accessible repositories on the GitHub site,
Adobe has demonstrated its strong dedication to open-source. Developer tools such
as the PhoneGap web design structure, the Brackets text editor, and the Topcoat CSS
libraries are among its most well-known open-source products. Additionally, members
of the Adobe team frequently contribute to several other open-source projects, including
Flex, Felix, Apache Cordova, Gecko, Blink, and WebKit [12].

Formulation of the problem. In the field of developing commercial software, the
linkage to open-source libraries is commonly performed. This approach provides scores
of advantages for depending on it, including, but not limited to: The reduction of the
costs required for successful development; The ability to speed the development process;
The availability of a remarkable number of innovations created by the community. But
it came with a new set of problems such as security problems, license problems, and
problem of dependency. This paper discusses that currently there is the problem of
a lack of a clear understanding of the extent of using open-source components and
corresponding opportunities and threats in various commercial projects.

This research aims at providing a critical review and assessment of the consequences
associated with the implementation of open-source libraries in developing and creating
business-oriented software products. The study thus seeks to embrace not only the
advantages of adopting open-source libraries but also the disadvantages where by this
detailed investigation will enhance the perception developers, project managers and
decision makers will enjoy as they make decisions on the necessity of integration of
open-source libraries into decisions. Therefore, the findings of the research will help in
advancing the current knowledge on how to optimally implement open-source software
without the bearing the negative consequences of free software, thus improving on the
usage of open-source solutions by the commercial world.

Purpose of the study. Open-source libraries have been employed in commercial
software development and this study aims at ascertaining the benefits realized together
with the danger of engaging in such practices. It is supposed to evaluate advantages,
like the lower cost of manufacturing and getting access to modern technologies, and
threats, like the compromising of security and the violation of the licensing agreement.
Thus, this study aims at looking at the effects on the development processes in order to

76
Таврійський науковий вісник № 3

understand the recommendations and procedures for integration. These results will be
of great value for the developers and managers who will be able to improve the strategic
application of open-source resources. It is thus safe to say that this research benefits the
existing literature on open-source software by being one of the few that links theory to
practice within the commercial realm.

Research analysis. While earlier developers considered OSS elements to be a
non-cost delivery method, it gradually evolved to the proposition where business
organizations have to invest time into using them. Thus, it made the ease of software
customization and the possibility of turning to community/commercial sources as a
priority when it comes to comparing different software [18]. The routine scanning for
license compliance with the SBoM for software is being integrated by the use of SPDX;
instance, by Siemens AG [19], OSTG [20], the Linux Foundation [21]. Most studies that
have been conducted in the last few years have addressed various phases in the adoption
of OSS components.

On the other hand, the usage and the degree of companies’ engagement with OSS
components have grown higher, however, there are limited sources available describing
the practices follow in companies to support the OSS components’ adoption. Some of
the more formalized schemes for evaluating OSS software described 10 years ago by
Yılmaz et.al (2022), their contemporaries have now disappeared from the academic
and practitioner discussion and more recent studies have revealed that trends regarding
the attitudes of the businesses toward the OSS components are evolving [22]. The
most important factors for developers were the flexibility of software modification,
the presence of available support from either the community or from a paying source;
the most important factor for their managers was commercial support. As for the other
elements, which were considered less but still relevant important, these were quality,
flexibility, maturity and reliability [18].

The idea of OSS component adoption is not as straightforward as looking for
functionally suitable software as the case might imply [23]. Companies have to make
additional decisions, for instance, the software licence of the component taking into
account the licensing strategy of the business [23]. A current initiative to create such
structure is the Linux Foundation’s Open Chain project [24], which has developed some
standard, including SPDX , which does allow for automated compliance checking, for
instance [25].

Fendt and Jaeger (2019) and Harutyunyan et al. (2019) discuss the issue of the
extensive large software product containing OSS licensed components. Fendt and
Jaeger (2019) explain the case of Siemens AG in terms of integrating the tool chains for
the license compliance checking into CI/CD. One consideration is that the procedure for
clearances of the license or the determination of the licensing of source code rather than
accepting the word of the packager is costly and in a rich SBoM has to be carried out
only once per package [19, 26]. Following are the summaries of the problem by Riehle
and Harutyunyan (2019), some solutions and some of the research questions that remain
unanswered. Yes, automation can be used but solutions now are constrained hence more
tools need to be created [26].

Main presentation: Advantages and Disadvantages of Open-source libraries
Both the advantages and disadvantages of OSSs are many. However, the benefits

outweigh the disadvantages. The next sections address the advantages and disadvantages.
Advantages of OSS
OSS’s have more benefits over proprietary software’s. Some of the advantages are

as follows:

77
Комп’ютерні науки та інформаційні технології

•	 Error free software: Like in computational programming there are multiple
chances that the software might crash or any other bugs that occur, it is always preferred
to be given the source code of the program so that anyone can handle the occurrence of
the errors. This is an advantage against the commercial software’s where modifications
are done by either only professional and we have to wait until they resolve the issue and
come with a solution. The only course of action that a user can take here is to inform
the developer about the problem, for these reasons OSS are more flexible and errors are
more quickly handled than in Commercial software’s [27].

•	 Availability of source code: One of the major components of the current procedure
is the source code, and it cannot be utilized for commercial software’s. In open-source,
codes of source are available to all users by viewing while in the other types of software,
it is only visible to a developer or a programmer [28].

•	 Modification and Redistribution: The most noticeable characteristic is, that not
only the source code is delivered, but the source code can even be modified regarding
our specifications. They can even be redistributed under the same conditions, and this
would favor the future users [29].

•	 Security purposes: Even if these people do not know fundamental facts about
software, they try to convince people that closed software are safer than OSS which
is not true for people who know about OSS and its advantages over closed software.
For security and merely for maintenance of the OSS it is mandatory to state your OSS
with the license terms. And the same terms of usage and rules are provided if the given
software is altered and redistributed [30].

•	 Customization: However, when it comes to active usage of software in an
institutional framework, there is always a requirement of a person having a copy of a
particular software. This is due to the fact that whenever we are handling commercial
software we are at a disadvantage of having no individual modeling of the particular
software. As with a point of view, we are always expected to call to the developer any
time we want to make any changes to the software, which is time consuming and costly
each and every time we get to consult the programmer. The advantage of OSS is that in
utilizing OSS we are able to incorporate any language that we like which is not possible
in commercial software [30].

•	 Avoiding Lock-in: It becomes costly high in any time when that organization is
already using software then every time if it wants to opt for software then it becomes
high cost and the organization is bounded or we can also say locked. To get bounded
to software which was adopted for doing a job is not a deal of being satisfied with, in
regards an institute. Software have their lifespan unless there is another one with some
new flexibility feature in the market. OSSs do not contain such types of locks and the
user can use any particular software when they desire [31].

•	 Costs: Normally OSS is free and in case of sometime training, support or
maintenance charge is very minimal, in fact which is also incomprehensible by any
small institute [32].

Disadvantages of OSS
There are very less disadvantages of OSS’s. Some of them are mentioned as follows:
•	 Warranty validity: The warranty clauses are as follows but they are valid for

certain conditions. For instance, if the customer experiences a problem with the code
during modification, then what he or she is experiencing disqualifies the warranty
sentences [33].

•	 No development guarantees: An element of uncertainty is the fact that in a
given period there might not be any development at all. If the code is not in action,
implementations of the software on the other hand will be primitive. As far as any user

78
Таврійський науковий вісник № 3

does not compile the source codes and does not make any changes in it, no growth of a
software can be seen [34].

•	 Performance: The commercial software’s may be faster than the OSS’s, because
its is receiving more traffic than the commercial software’s. Thus, the highly profiled
companies give preferences to the commercial software’s rather than the OSS’s [34].

•	 Maintenance costs: As it mentioned always it is free software most of the time
90% of the cost shows that it is just for the Maintenance [35].

•	 Trademarks: As for the OSSs developed by a given company, there are some of
them do not desire to eradicate their trademark. This is a sort of deceptive Danish end
user who needs to alter it, and once more resell it without trademarks [36].

•	 Certifications: The clients nowadays are in a position to pay for brands instead
of choosing things that may be cheap, because the focus is on quality not the price. That
is a known fact that commercial software’s are very costly ones, but they may contain
more efficiency than free software’s [37].

Many of the advantages are the same as those reported in the literature, but some new
information also emerged, such as the additional business functionality provided by OSS
and the creation of de facto standards. Only two of the technical disadvantages of OSS that
have been documented in the literature–compatibility problems and a lack of experience–
are supported by the study's findings. It was shown, therefore, that the issue of lack of
competence is typically more closely linked to an absence of knowledge about OSS. The
main perceived disadvantages were found to be inadequate documentation, an excessive
number of interfaces, limited functionality, and a deficiency of roadmaps (Tables 1-3).

Table 1
Technical Benefits of OSS

Reliability The majority of literature listed reliability as one of the primary
technological advantages in terms of high application availability

and dependability.
Security The majority of literature felt that OSS offers superior security since it is

readily available, poses less of a risk from viruses, and prioritizes security
during the product design process. Two businesses believed that OSS

would not improve security
Quality Regarding improved quality from peer reviews and the caliber of

developers and testers, the majority of literature said that quality was
beneficial. According to two companies, this was limited to high-end,

established OSS programs like Linux.
Performance Literature mentioned having good capacity and fast performance. Three

have not yet seen more proof of OSS's effectiveness, and two were unsure
if OSS outperformed proprietary.

Flexibility of Use Advantageous to the majority of literature because it permits flexibility,
personalization, experimentation, and alteration

Developer &
Tester Base

Very advantageous for the majority since it guarantees that OSS is current
and of high-quality software.

Compatibility Many stated that because OSS is very interested in preserving formats for
improved interoperability, it helps to ensure compatibility. The remainder

had not observed any proof of this or thought it was not worthwhile.
Harmonization Enhanced standardization of procedures and activities related to

interoperability

79
Комп’ютерні науки та інформаційні технології

Table 2
Business Benefits of OSS

Low Cost When it came to lower license costs, software upgrades, virus
protection, and the overall cost of the package – that is, the software

plus service – half of the literature thought this was advantageous. The
other half believed there was no advantage at cheap cost.

Flexibility by licenses Most people believe to have a major influence on lowering capital
expenditure in businesses

Escapes vendor
lock-in

Extremely advantageous for the majority since it allows for
independence from commercial sellers, a sense of control, and freedom
of choice. Two businesses believed that OSS may also be affected by

vendor lock-in.
Increases

collaboration
Increased cooperation is advantageous to most parties since OSS makes
it easier to develop new products, cooperate and share expertise, creates

new avenues for collaboration, and allows businesses to share costs.
Encourages
innovation

The majority concluded that having access to the source code promotes
more creativity by generating ideas and technical innovation while also

expanding avenues for innovation.
Extra business
functionality

Advantageous as it makes it possible to maintain small teams, which
enhances output and communication

De facto standards Not the only business taking action. It would be advantageous to
create a standard that enables the business to concentrate on its core

competencies.

Table 3
Technical Drawbacks of OSS

Compatibility Issues Not implicitly disadvantageous but some businesses involvement
compatibility difficulties with present technology, skills and tasks

Lack of Expertise While it's true that the typical lay employee lacks experience, this
might also be due to a lack of knowledge of OSS.

Poor documentation Outdated documentation or maybe lost during development
Proliferation of

Interfaces
Various builds frequently make it difficult to decide which one to use.

Less Functionality Integration level inferior to that of Microsoft
Lack of Roadmaps Makes it challenging for businesses to identify a strategic direction

for the great majority of their goods. The majority of items lack a
strategic purpose.

Table 4
Business Drawbacks of OSS

Lack of support The majority said there was not any security since there was no
organization to support it or any kind of help

Lack of ownership It is impossible to hold someone accountable or liable for issues
Access to the source

code
 The possibility that certain employees would feel uneasy about

disclosing source code. Lack of understanding on this matter
Insufficient marketing OSS is not owned by a single entity, nor is there a marketing

budget, therefore word-of-mouth advertising is the main
source of OSS.

80
Таврійський науковий вісник № 3

Investments for training Four businesses stated that Linux required more training
expenditures than Windows. On the other hand, it was discovered

that e obtains superior quality OSS training.
Finding the right staff/

competencies
Finding employees and developing their skills to work using OSS

apps may be challenging.

It was discovered that managers face more difficulties dealing with the commercial
disadvantages listed in Table 4 than they do with their technical equivalents. For
instance, the bulk of the enterprises regarded a lack of help as a serious disadvantage.
Teams of technicians from a few of the businesses are available for internal support. But
for many smaller companies, this isn't always an option.

The research paper under consideration presents the reader with information on how
artificial intelligence and computer programs have affected translation. It poses a question
of whether any of the existing traditional approaches to the translation could be substituted
with the machine-aided method and underline the importance of further analyzing and
sharing the experiences of employing the new technologies in the field of translation.
Machines, especially neural networks, are considered in the context of the translation,
education, and work with the mention of the outcomes. Different authors pointed out
that using machine translation it is possible to improve the educational process, but at the
same time, the activity of a human translator should have to be preserved.

It also presents a brief on competencies necessary for translators in the new
world and an acknowledgment of post-editing in machine translation. Machine and
automated translations are discussed and weighed and the most common programs used
for translation such as DeepL, Google Translate, and Microsoft Bing Translator are
discussed. The features of such programs are:

– the languages the programs support,
– various translation limits,
– an overview of other functions.
 The analysis results that have been underlined are the further discussion regarding

the effects of AI and computer programs in translation, the future research and
generalization of the application of the technological advancement in translation, the
importance of the MT as an add-on for learning particularly in the classroom setting, the
shift of competencies of translators in the new technological environment, the necessity
of post-editing of the MT and the distinction between MA and automatic translation
[38].

Conclusions. Finally, this paper has expanded on the former existing research reviews
on OSS advantages and disadvantage for practitioners by discussing the functional and
commercial advantages and disadvantages done by the managers in the firms in the
ESSS. Whereas the features like having the source code and being able to modify it has
contributed in defining many technical advantages such as reliability, security, flexibility
of use and performance. Within it, it was also established that such benefits were far
superior to those of proprietary software. The business gains established in the research
were also equal to the interviewees’ gains equivalent to technical gains particularly the
vendor locking avoidance, collaboration, and innovation gains. Nonetheless the user
support from a community is very advantageous to OSS as whoever is employing the
software is served by a proactive community of believers ready to assist with queries.
Out of the identified firms, only one considered possible business advantage of adopting
OSS as user support from the community.

Continuation of table 4

81
Комп’ютерні науки та інформаційні технології

The remaining companies indicated that support from the third party such as consultants,
professional software houses were more appealing. Some technical disadvantages
discovered in prior studies; for instance: different versions, installation issues, security
issues, OSS is not as friendly and getting support and updating of OSS were not found
to be serious limitations by the subjects, unlike proprietary software, OSS is less user-
friendly and there was little evidence of companies having installation issues. Last but not
the least, the business impacts discovered into the study reveal a similar picture as seen in
the research findings of previous studies. Nonetheless, these disadvantages seemed to be a
higher thorn in the flesh according to OSS than with their technical counterparts.

BIBLIOGRAPHY:
1.	Setia P., Bayus B. L., Rajagopalan B. The takeoff of open-source software: a

signaling perspective based on community activities. MIS Quarterly. 2020. Vol. 44.
2.	Albeladi S. S. The role of open-source software to create digital libraries and

standards assessment. International Journal of Computer Science & Network Security.
2021. Vol. 21. P. 241-248.

3.	Fortunato L., Galassi M. The case for free and open-source software in research
and scholarship. Philosophical Transactions of the Royal Society A. 2021. Vol. 379.
Article number 20200079.

4.	Boeing G., Higgs C., Liu S., Giles-Corti B., Sallis J. F., Cerin E., et al. Using open
data and open-source software to develop spatial indicators of urban design and transport
features for achieving healthy and sustainable cities. The Lancet Global Health. 2022.
Vol. 10. P. e907-e918.

5.	Lenarduzzi V., Taibi D., Tosi D., Lavazza L., Morasca S. Open-source software
evaluation, selection, and adoption: a systematic literature review. In 2020 46th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2020. P. 437-444.

6.	Kholod I., Yanaki E., Fomichev D., Shalugin E., Novikova E., Filippov E., et al.
Open-source federated learning frameworks for IoT: A comparative review and analysis.
Sensors. 2020. Vol. 21. P. 167.

7.	Bonati L., Polese M., D’Oro S., Basagni S., & Melodia T. Open, programmable,
and virtualized 5G networks: State-of-the-art and the road ahead. Computer Networks.
2020. Vol. 182. Article number 107516.

8.	Harris I. Package development. In Beginning Salesforce DX: Versatile and
Resilient Salesforce Application Development. Springer, 2022. P. 457-529.

9.	Green C., Amundson J., Garren L., Gartung P., Sexton-Kennedy E. SpackDev:
Multi-package development with spack. EPJ Web of Conferences. 2020. Vol. 245.
Article number 05035.

10.	Cardoso M. J., Li W., Brown R., Ma N., Kerfoot E., Wang Y. et al. Monai: An
open-source framework for deep learning in healthcare. arXiv. 2022. Vol. 2211. Article
number 02701.

11.	 Winata A. P., Fadelina R., Basuki S. New normal and libraries services in
Indonesia: A case study of university libraries. Digital Libraries Perspectives. 2021.
Vol. 37. P. 77-84.

12.	Fox E.A., da Silva Torres R. Digital libraries technologies. Springer Nature,
2022.

13.	Cowell J. Managing a libraries service through a crisis. Libraries Management.
2021. Vol. 42. P. 250-255.

14.	Kiron D., Spindel B. Rebooting work for a digital era: how IBM reimagined
talent and performance management. MIT Press, 2020.

15.	Boemer F., Kim S., Seifu G., de Souza F.D.M., Gopal V. Intel HEXL: accelerating
homomorphic encryption with Intel AVX512-IFMA52. arXiv. 2021. Vol. 2103. Article
number 16400.

82
Таврійський науковий вісник № 3

16.	Kato A., Kisangiri M., Kaijage S. A review development of digital libraries
resources at university level," Education Research International. 2021. Vol. 2021.
P. 8883483.

17.	Chan T.T.W., Lam A. H. C., & Chiu D. K. From Facebook to Instagram: Exploring
user engagement in academic libraries. The Journal of Academic Librarianship. 2020.
Vol. 46. Article number 102229.

18.	Lenarduzzi V., Tosi D., Lavazza L., Morasca S. Why do developers adopt open-
source software? Past, present and future. In IFIP International Conference on Open-
source Systems. Montreal: HAL Science, 2019. P. 104-115.

19.	Fendt O., Jaeger, M.C. Open-source for open-source license compliance.
In Open-source Systems: 15th IFIP WG 2.13 International Conference, OSS 2019.
Montreal: HAL Science, 2019. P. 133-138.

20.	Geyer-Blaumeiser L. Ensuring open-source compliance using Eclipse
Foundation technology. EclipseCon Europe, 2022.

21.	Azhakesan A., Paulisch F. Sharing at scale: an open-source-software-based
license compliance ecosystem. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice. ICSE-SEIP,
2020. P. 130-131

22.	Yılmaz N., Kolukısa Tarhan A. Quality evaluation models or frameworks for
open-source software: A systematic literature review. Journal of Software: Evolution
and Process. 2022. Vol. 34. Article number e2458.

23.	Spinellis D. How to select open-source components. Computer. 2019. Vol. 52.
P. 103-106.

24.	Urbančok B. D. Blockchain open-source software comparison. Masaryk
University Faculty of Informatics (MUNI), 2019. URL: https://is.muni.cz/th/qr98z/
thesis.pdf.

25.	Billimoria K. N. Linux Kernel Programming: A comprehensive guide to kernel
internals, writing kernel modules, and kernel synchronization. Packt Publishing Ltd,
2019.

26.	Harutyunyan N., Bauer A., Riehle D. Industry requirements for FLOSS
governance tools to facilitate the use of open-source software in commercial products.
Journal of Systems and Software. 2019. Vol. 158. Article number 110390.

27.	Karampatsis R.-M., Babii H., Robbes R., Sutton C., Janes A. Big code!= big
vocabulary: Open-vocabulary models for source code. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. IEEE, 2020. P. 1073-1085.

28.	Bonfield J.K., Marshall J., Danecek P., Li H., Ohan V., Whitwham A. et al.
HTSlib: C libraries for reading/writing high-throughput sequencing data. Gigascience.
2021. Vol. 10. Article number giab007.

29.	Campos C., Elvira R., Rodríguez J. J. G., Montiel J. M., Tardós J. D. Orb-slam3:
An accurate open-source libraries for visual, visual–inertial, and multimap slam. IEEE
Transactions on Robotics. 2021. Vol. 37. P. 1874-1890.

30.	Wang Y., Chen B., Huang K., Shi B., Xu C., Peng X., et al. An empirical study
of usages, updates and risks of third-party libraries in java projects, In 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020. P. 35-45.

31.	Diesch R., Pfaff M., Krcmar H. A comprehensive model of information security
factors for decision-makers. Computers & Security. 2020. Vol. 92. Article number
101747.

32.	Bjork B.-C., Korkeamaki T. Adoption of the open access business model in
scientific journal publishing: A cross-disciplinary study. arXiv. 2020. Vol. 2005. Article
number 01008.

33.	Tang J., Li B.-Y., Li K.W., Liu Z., & Huang J. Pricing and warranty decisions in
a two-period closed-loop supply chain. International Journal of Production Research.
2020. Vol. 58. P. 1688-1704.

83
Комп’ютерні науки та інформаційні технології

34.	Grimaldi M., Greco M., Cricelli L. A framework of intellectual property
protection strategies and open innovation. Journal of Business Research. 2021. Vol.
123. P. 156-164.

35.	Enkel E., Bogers M., Chesbrough H. Exploring open innovation in the digital
age: A maturity model and future research directions. R&d Management. 2020. Vol. 50.

36.	Bouncken R.B., Kraus S., Roig-Tierno N. Knowledge-and innovation-
based business models for future growth: Digitalized business models and portfolio
considerations. Review of Managerial Science. 2021. Vol. 15. P. 1-14.

37.	Trischler M.F.G., Li-Ying J. Digital business model innovation: toward construct
clarity and future research directions. Review of Managerial Science. 2023. Vol. 17.
P. 3-32.

38.	Нестеров В., Костенко В., Курасова Н. Технологічні інновації у перекладі:
вплив комп’ютерних програм та штучного інтелекту. Вісник науки та освіти. Том
20. № 2. С. 261-273.

REFERENCES:
1.	Setia, P., Bayus, B. L., & Rajagopalan, B. (2020). The takeoff of open-source

software: a signaling perspective based on community activities. MIS Quarterly, 44.
2.	Albeladi, S. S. (2021). The role of open-source software to create digital libraries

and standards assessment. International Journal of Computer Science & Network
Security, 21, 241-248.

3.	Fortunato, L., & Galassi, M. (2021). The case for free and open-source software
in research and scholarship. Philosophical Transactions of the Royal Society A, 379,
20200079.

4.	Boeing, G., Higgs, C., Liu, S., Giles-Corti, B., Sallis, J. F., Cerin, E., et al. (2022).
Using open data and open-source software to develop spatial indicators of urban design
and transport features for achieving healthy and sustainable cities. The Lancet Global
Health, 10, e907-e918.

5.	Lenarduzzi, V., Taibi, D., Tosi, D., Lavazza, L., & Morasca, S. (2020). Open-
source software evaluation, selection, and adoption: a systematic literature review. In
2020 46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA) (pp. 437-444). IEEE.

6.	Kholod, I., Yanaki, E., Fomichev, D., Shalugin, E., Novikova, E., Filippov, E., et
al. (2020). Open-source federated learning frameworks for IoT: A comparative review
and analysis. Sensors, 21, 167.

7.	Bonati, L., Polese, M., D’Oro, S., Basagni, S., & Melodia, T. (2020). Open,
programmable, and virtualized 5G networks: State-of-the-art and the road ahead.
Computer Networks, 182, 107516.

8.	Harris, I. (2022). Package development. In Beginning Salesforce DX: Versatile
and Resilient Salesforce Application Development (pp. 457-529). Springer.

9.	Green, C., Amundson, J., Garren, L., Gartung, P., & Sexton-Kennedy, E. (2020).
SpackDev: Multi-package development with spack. EPJ Web of Conferences, 245,
05035.

10.	Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y. et al. (2022).
Monai: An open-source framework for deep learning in healthcare. arXiv, 2211, 02701.

11.	 Winata, A. P., Fadelina, R., & Basuki, S. (2021). New normal and libraries
services in Indonesia: a case study of university libraries. Digital Libraries Perspectives,
37, 77-84.

12.	Fox, E.A., & da Silva Torres, R. (2022). Digital libraries technologies. Springer
Nature.

13.	Cowell, J. (2021). Managing a libraries service through a crisis. Libraries
Management, 42, 250-255.

14.	Kiron, D., & Spindel, B. (2020). Rebooting work for a digital era: how IBM
reimagined talent and performance management. MIT Press.

84
Таврійський науковий вісник № 3

15.	Boemer, F., Kim, S., Seifu, G., de Souza, F.D.M., & Gopal, V. (2021). Intel
HEXL: accelerating homomorphic encryption with Intel AVX512-IFMA52. arXiv,
2103, 16400.

16.	Kato, A., Kisangiri, M., & Kaijage, S. (2021). A review development of digital
libraries resources at university level," Education Research International, vol. 2021,
p. 8883483.

17.	Chan, T.T.W., Lam, A. H. C., & Chiu, D. K. (2020). From Facebook to
Instagram: Exploring user engagement in academic libraries. The Journal of Academic
Librarianship, 46, 102229.

18.	Lenarduzzi, V., Tosi, D., Lavazza, L., & Morasca, S. (2019). Why do developers
adopt open-source software? Past, present and future. In IFIP International Conference
on Open-source Systems (pp. 104-115). Montreal: HAL Science.

19.	Fendt, O., & Jaeger, M.C. (2019). Open-source for open-source license
compliance. In Open-source Systems: 15th IFIP WG 2.13 International Conference,
OSS 2019 (pp. 133-138). Montreal: HAL Science

20.	Geyer-Blaumeiser, L. (2022). Ensuring open-source compliance using Eclipse
Foundation technology. EclipseCon Europe.

21.	Azhakesan, A., & Paulisch, F. (2020). Sharing at scale: an open-source-
software-based license compliance ecosystem. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering in Practice
(pp. 130-131). ICSE-SEIP.

22.	Yılmaz, N., & Kolukısa Tarhan, A. (2022). Quality evaluation models or
frameworks for open-source software: A systematic literature review. Journal of
Software: Evolution and Process, 34, e2458.

23.	Spinellis, D. (2019). How to select open-source components. Computer, 52,
103-106.

24.	Urbančok, B. D. (2019). Blockchain open-source software comparison. Masaryk
University Faculty of Informatics (MUNI). https://is.muni.cz/th/qr98z/thesis.pdf.

25.	 Billimoria, K. N. (2019). Linux Kernel Programming: A comprehensive guide to
kernel internals, writing kernel modules, and kernel synchronization. Packt Publishing Ltd.

26.	Harutyunyan, N., Bauer, A., & Riehle, D. (2019). Industry requirements for
FLOSS governance tools to facilitate the use of open-source software in commercial
products. Journal of Systems and Software, 158, 110390.

27.	Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., & Janes, A. (2020). Big
code!= big vocabulary: Open-vocabulary models for source code. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, (pp. 1073-1085).
IEEE.

28.	Bonf﻿ield, J.K., Marshall, J., Danecek, P., Li, H., Ohan, V., Whitwham, A. et
al. (2021). HTSlib: C libraries for reading/writing high-throughput sequencing data.
Gigascience, 10, giab007.

29.	Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D.
(2021). Orb-slam3: An accurate open-source libraries for visual, visual–inertial, and
multimap slam. IEEE Transactions on Robotics, 37, 1874-1890.

30.	Wang, Y., Chen, B., Huang, K., Shi, B., Xu, C., Peng, X., et al. (2020). An
empirical study of usages, updates and risks of third-party libraries in java projects, In
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)
(pp. 35-45). IEEE.

31.	Diesch, R., Pfaff, M., & Krcmar, H. (2020). A comprehensive model of
information security factors for decision-makers. Computers & Security, 92, 101747.

32.	Bjork, B.-C., & Korkeamaki, T. (2020). Adoption of the open access business
model in scientific journal publishing: A cross-disciplinary study. arXiv, 2005, 01008.

33.	Tang, J., Li, B.-Y., Li, K.W., Liu, Z., & Huang, J. (2020). Pricing and warranty
decisions in a two-period closed-loop supply chain. International Journal of Production
Research, 58, 1688-1704.

85
Комп’ютерні науки та інформаційні технології

34.	Grimaldi, M., Greco, M., & Cricelli, L. (2021). A framework of intellectual
property protection strategies and open innovation. Journal of Business Research, 123,
156-164.

35.	Enkel, E., Bogers, M., & Chesbrough, H. (2020). Exploring open innovation in
the digital age: A maturity model and future research directions. R&d Management, 50.

36.	Bouncken, R.B., Kraus, S., & Roig-Tierno, N. (2021). Knowledge-and
innovation-based business models for future growth: Digitalized business models and
portfolio considerations. Review of Managerial Science, 15, 1-14.

37.	Trischler, M.F.G., & Li-Ying, J. (2023). Digital business model innovation:
toward construct clarity and future research directions. Review of Managerial Science,
17, 3-32.

38.	Nesterov, V., Kostenko, V., & Kurasova, N. (2024). Technological innovations
in translation: the influence of computer programs and artificial intelligence. Bulletin of
Science and Education, 2(20), 261-273.

