KOMMT'KOTEPHI HAYKU
TA IHPOPMALLIMHI TEXHOAOTII

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

UDC 004.05
DOI https://doi.org/10.32782/tnv-tech.2024.4.1

FEATURES OF AUTOMATED TESTING USING FRAMEWORKS

Antonenko A. V. — PhD in Technical Sciences, Associate Professor,

Associate Professor at Department of Standardization and Certification of Agricultural
Products of the National University of Life and Environmental Sciences of Ukraine
ORCID ID: 0000-0001-9397-1209

Vostrikov S. O. — Postgraduate Student at the Department of Computer Engineering
of the State University of Information and Communication Technologies
ORCID ID: 0009-0008-8425-8872

Burachynskyi A. Yu. — Postgraduate Student at the Department
of Computer Engineering of the State University of Information
and Communication Technologies

ORCID ID: 0009-0003-7913-2152

Tverdokhlib A. O. — Postgraduate Student at the Department of Computer Engineering
of the State University of Information and Communication Technologies
ORCID ID: 0000-0002-6591-2866

Balvak A. A. — Postgraduate Student at the Department of Computer Engineering
of the State University of Information and Communication Technologies
ORCID ID: 0000-0002-6441-8225

Slobodian O. A. — Master of the State University of Information
and Communication Technologies
ORCID ID: 0009-0008-9388-3629

| TaBpiticeknit HaykoBui BicHHK Ne 4

4

The article examines three of the most common problems that automatizers face, as well as
ways to solve them. In order to successfully enter the market and maintain a stable position,
each product is tested at different stages of its life cycle and in different aspects. This is a critical
step in the development and support process, because as the IT industry evolves, the demand
for the end product to remain competitive increases. Today, important features such as stability,
ease of use, and thoughtful user interface design have become standard. In order to consistently
attract new customers, it is necessary to provide more than just the basic requirements, each
characteristic or specification needs detailed verification. It is estimated that the total cost of
software testing can be 15 to 25% of the total project cost, so it is important to approach this
process with a clear plan and preparation. Products can be conventionally classified into two
categories: those that will not be refined after entering the market, and those that will undergo
constant improvements throughout their life cycle. In the first case, it is enough to carry out full
manual testing, and in case of a successful result, release the product. In the second, testing must
be carried out regularly, with each change or update, which takes a significant part of resources
and budget. That is why such projects usually use test automation, which reduces the amount
of manual work. This can be more cost-effective, and can significantly save time and resources,
while providing greater accuracy and efficiency compared to repeated manual testing. However,
creating a new system for developing and running test cases for each project is quite difficult
and expensive. In this regard, specialists have developed universal frameworks for automated
testing, which are flexibly adjusted to specific needs. The use of such _frameworks is accompanied
by certain challenges that can affect the effectiveness of testing.

Key words: test framework, testing, automation, test case, automation tools.

Anmonenko A. B., Bocmpikog C. O., Bypauuncokuii A. 0., Teepooxnio A. O., baneax A. A.,
Cn0600an 0. A. Ocodnusocmi agmomamu306ano20 mecmysaHHs 3 GUKOPUCMAHHAM PeliMBOPKie

Y cmammi pozensnymo mpu naiibinbw nowupeni npodiemu, 3 AKUMU CIMUKAIOMbCS ABMO-
MAmMu3amopu, a MmaxKoxC WAaxu ix eupiuenHs. Jis ycniuno2o 8uxo0y Ha puHoK ma cmabiibHoi
VMPUMAHHA RO3UYTLL, KOJCEH NPOOYKM NPOXOOUMb MECHY8AHHS HA PIHUX emanax c6020 JHCum-
Mego2o Yukny ma 6 pisnux acnexmax. Lle kpumuuno adciuguii eman y npoyeci po3pooku ma
nIOMPUMKU, OCKiTbKU 3 pozsumkom I T-indycmpii 3pocmae 6umoza 00 KiHyeso2o npooykmy, uoo
6IH 3aMUWABCS KOHKYpeHmOocnpomodcHum. Co0200Hi MAKi 6adCIUGT XapaKmepucmuxu, K cma-
OinbHICMb, 3PYUHICIb Y GUKOPUCIANHHT MA NPOOYMAHUL OU3aliH IHmep@eticy Kopucmysaia Cmaiu
cmanoapmom. LLJo6 nocmitino 3anyuamu HOBUX KAIEHMIE, HeoOXIOHO 3abe3neuumu Oinbuie, HidHC
npocmo 6a308i BUMO2U,; KOJICHA XAPAKMeEPUCTUKA Yil cheyugikayis nompeoye 0emanbHo2o nepe-
GIpAHHA. 30 OYIHKAMU, 3A2ATbHI BUMPAMU HA MECMYBAHHS NPOSPAMHO20 300e3NeYeHHs MONCY b
cmanosumu 8i0 15 0o 25% 3azanvHoi éapmocmi npoexny, momy 8axicaugo nioxooumu 00 ybo2o
npoyecy 3 4imkuM NAAHOM Ma nid20mosKko. 1Ipo0ykmu ModcHa yMOBHO Kaacugikysamu Ha 08i
Kame2opii: mi, sKi nicis 6UX00y HA PUHOK He OY0ymb 00npaybo8y8amucy, i mi, Wo 3a3Hasamu-
MYmMb NOCMIUHUX NONINULEHb NPOMASOM BCbO20 C8020 YUKTY. V nepuiomy unaoky oocums npo-
gecmu nogHe MaHyanrbhe mecmy8anHs, iy pasi YCniumoz2o pe3yivmanmy GUnyCmumu npooyKm.
Y opyeomy — mecmyesanns neobxiono nposooumu pe2yisipHo, 3 KOJICHOIO 3MIHOIO 4l OHOGNEHHSM,
Wo 3atmac 3Hauny wacmuny pecypcie i 6100scemy. Came momy Ha MaKux NPOEKmMax 3a36uyail
3ACMOCO8YEMbCA AGMOMAMU3AYIS MECHYBANHS, KA 3HUNCYE 0bcsieu pyuHoi pobomu. Lle mooice
Oymu exoHoMiuHiwe, a MAaKodic 00380IAE CYMMEBO 3eKOHOMUMU Yac i pecypcu, 3abe3neuyiouu
npu yboMy OLIbULY MOYHICIb MA ePeKMUBHICMb 6 NOPIGHSHHI 3 NOGMOPHUM PYUHUM MECHY8aAH-
Ham. IIpome cmeopumu Ho8y cucmemy O po3poOKu ma 3anycky mecm-Keucie O KOHCHO20
npoekmy — 0oCumb CKIAOHO ma eUMpamHo. Y 36 3Ky 3 yum ¢axisyi po3poounu yuieepcanvhi
Ppeiimeopru 01 a8mMoMamu308aH020 MeCMY8aHHs, AKI 2HYUKO HANAUIMOBYIOMbCA Nid cneyu-
@iuni nompebu. Buxopucmanns maxux ¢perumeopkie cynposootCcyEmbCs NeGHUMU BUKTUKAMU,
AKI MOJICYMb NAUBAMU HA eHEKMUBHICING MECTTY8ANHSL.

Knrouosi cnosa: mecmosuil (hpetimeopk, mecmysants, asmomamusayis, mecm Keic, iHcmpy-
MeHmu OJ1s. AMomMamu3ayii.

Introduction. In today’s world, where the speed of software development is key,
software testing is undoubtedly an integral part of the software development life cycle
(SDLC). With the development of Agile and DevOps methodologies, as well as the
desire of enterprises for rapid releases and quality products, there has been a need for
software testing methods that are faster and more efficient than manual testing. It is at this
moment that the architecture of automation of software testing, which is implemented

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

| 5

with the help of frameworks, is becoming more and more widespread and today is the
leader in software testing [1-3].

The Test Automation Framework is not a single tool or process, but a set of tools
that work together to support direct automated testing, test case development, report
generation, or integration with other tools. It combines various parts such as libraries,
test data and various reusable modules. It is a conceptual part of automated testing that
helps testers use resources more efficiently. A framework can be defined as a set of rules
or best practices that can be followed systematically to ensure the desired results are
achieved. In general, it is a platform developed by integrating various hardware and
software resources, as well as using various tools based on qualified selection. It allows
you to effectively design and develop automated testing scenarios, and also provides a
reliable analysis of problems or errors for the object under test [4-6].

When developing and using frameworks, automatizers will face a number of problems
that can affect the quality of testing and its costs. Some of these problems will be unique
to the project being developed, but many of them will be either the same or similar in
meaning or origin, and therefore it will be sufficient to adapt an existing solution instead
of developing a new one. Therefore, in order to bring the greatest benefit and be able to
correctly allocate project resources, it is important to understand the problems that often
occur and to be able to adjust existing solutions to your own needs, because frameworks
remain an important tool for ensuring software quality. Using the right approach, you can
significantly reduce testing costs and reduce the time required to release new software
versions. Below we will consider the main difficulties that are often encountered in the
development and use of frameworks for automated testing, as well as several possible
ways to solve these problems, with a separate analysis of each of them. This will allow
you to deepen your understanding, as well as to have in your arsenal several options for
approaches that can be combined to achieve the most beneficial result.

Formulation of the problem. One of the main challenges in automation is the
need to ensure that tests cover various requirements, both functional and non-func-
tional, while maintaining a high speed of test execution and maximum autonomy from
humans. Therefore, it requires more knowledge and skills from automation engineers,
since improper use and configuration of the framework can lead to deterioration of the
testing process, which will have a negative impact on the entire project [7-10].

The problems considered in this article have an important practical connection with
tasks in the field of software development and testing. After all, the developers of test
frameworks always face the task of providing the best possible support and quality
control of the product

The aim of the study. The purpose of the work is to deepen the understanding of the
problems associated with the use of frameworks for automated testing and to provide
information on possible ways to solve them.

The object of research is frameworks for automated testing.

The subject of the research are problems related to the use of frameworks for auto-
mated testing and ways to solve them.

Analysis of recent research and publications. The analysis of information sources
related to the problems of development and use of frameworks for automated testing
confirms the importance of this topic and helps to gain a deeper understanding of the
existing issues.

In the scientific work «Challenges in Test Automation Framework Design and
Developmenty in the International Journal of Advanced Research in Computer Science
and Software Engineering [5], he examines the problems that arise in the development

| TaBpiticeknit HaykoBui BicHHK Ne 4

6 |

and use of frameworks for automated testing. The article describes issues with data
usage, issues with managing test scenarios and scripts, and issues with test environment
variability.

The study «Issues and Challenges of Test Automation: A Systematic Literature
Review» [6] examines the problems associated with automated testing in general. The
study confirmed that many companies use frameworks for automated testing and often
face problems in their development and maintenance. The study notes that the lack of
standards and norms in the development of test scenarios is one of the main problems.

In the scientific work «The challenges and benefits of continuous integration in soft-
ware engineering» in the journal Information and Software Technology [11], he consid-
ers the problems associated with the implementation of Continuous Integration in the
software development process. The article states that the integration of test frameworks
is one of the most difficult tasks when implementing Continuous Integration. The article
also describes the benefits of Continuous Integration, such as reducing software release
risks and reducing the time it takes to identify and fix bugs.

The study «Automation testing challenges and solutions: A review» in the International
Journal of Computer Applications [12] explores the challenges associated with automated
testing in general. The article describes problems that may arise when using frameworks,
such as the difficulty of debugging test scripts and problems with the variability of the test
environment. The article also provides various solutions to solve these problems.

After analyzing the sources, the questions that most often affect the testing process
were selected for consideration:

1. Creation and maintenance of test scripts.

2. Lack of generally accepted standards and norms for the development of test sce-
narios.

3. Integration of test frameworks into the process of Continuous Integration / Con-
tinuous Development.

These problems lead to errors and delays in the software development process, so
studying and solving them is an important topic for those involved in software develop-
ment and testing. Knowing about these issues will help you develop an effective testing
strategy and choose the tools that are most suitable for a particular project.

Presentation of the main research material. The first problem that automatizers
face is the creation and maintenance of test scripts. This task takes a lot of time and
effort of the automatizer, because the system under test is often changed and supple-
mented, and therefore, previously written tests may already be out of date and need to
be updated. When there are thousands of such tests, it is not an easy task, so in order
not to waste time and project resources, it is important to understand the problem and
approaches to solving it. Let’s analyze the possible solutions.

The first way is to use design patterns and code refactoring. Conventionally, three
levels of re-use of parts of the code can be distinguished. The lower one is a collection
of classes, libraries, and modules. Frameworks are at the highest level, because only
architecture is important for them. A framework is usually much larger than a single
class. It allows you to specify the desired behavior, and then, when certain conditions
are met, it itself causes it. For example, JUnit calls your class when it needs to run
a test. Everything else happens inside the framework. At the middle level, you can
place patterns that are more abstract than frameworks, and at the same time have less
binding to the programming language. They are descriptions of how certain classes
or methods interact with each other. The main advantages of using templates are as
follows:

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

1. Save time and effort

2. Reduce maintenance costs

3. Improve code reuse

4. Increase reliability

5. Help create structured code that facilitates the automation process

6. Improve communication and understanding between engineers.

They help separate the internal implementation of the framework from the imple-
mentation of tests or solve the problem of code standardization and allow you to use
solutions that have already been tested by a huge number of engineers, adapting them
to your own needs.

Templates often used in automation are Page Object Model, Factory and Singleton.

Page Object Model (POM) allows you to separate the structure of the web page from
the test script, which provides greater stability and convenience of test case support.
With the help of POM, the structure of a web page is displayed as objects whose meth-
ods abstract requests and settings, giving only a user-friendly readable interface to the
outside. Another advantage is the possibility of reusing these objects. If the structure of
the web page changes, then only the implementation of the object needs to be changed,
and the test cases will remain unchanged.

In the factory design pattern, there is a class with a factory method that handles all
the processes of creating objects. This pattern has a superclass with several subclasses,
and based on user input at the test class level, it returns one of the subclasses. A class that
extends the parent class is responsible for the implementation logic, so it hides complex
code at the testing level. As a user, we just need to create an object of this class and use
it in the test to call the corresponding method containing the business logic.

The Singleton design pattern is one of the simplest and most straightforward pat-
terns to implement in an automation framework. This pattern is used when you want
to use the same class object in different places. It limits the possible instances of a
class to a single instance. To implement it, you need to declare the constructor of
the class as private so that no one can create an instance of the class outside of it,
then declare a static reference variable of the class and a static method that returns
an object of the same class. Also, this method should check whether the object has
already been created once [13].

The next solution is to use tools that allow you to write test scripts. Such tools auto-
matically remember the actions performed by the user. An example is Selenium IDE,
which allows you to record test actions in Selenese format. This is very convenient for
automators without sufficient programming knowledge, however, research shows that
using such tools is ineffective in case of complex test scenarios or when changing the
structure of a web page. Also, the lack of programming skills in the automator can lead
to the generation of incorrect test scripts, so this approach requires attention and a man-
datory review of tests by more experienced colleagues.

Another way is to use parameterization. This approach creates a single (perhaps
slightly more complex) test script that accepts a specific set of test variations, allowing
for many more tests. A good example is testing any input field. You can create a single
test script that will accept various combinations of text as input, and check the behavior
of the site in each of the variations. But it is worth noting that the use of parameteri-
zation is not always necessary and it depends on the situation. The best scenario for
such tests is when we have many test variations for a single test. On the other hand,
parameterized tests should not be used in situations where only one set of data is tested.
Separating the data from the test would be an overcomplication.

| TaBpiticeknit HaykoBui BicHHK Ne 4

8

Advantages of using parameterization:

1. Only one test is needed for many test cases.

2. Test logic is separated from test data.

3. The data file can be easily shared with other team members, especially useful if
you need to share with manual testers who do not know the programming language.

4. They reduce code repetition.

Disadvantages of using parameterization:

1. Separating test logic from test parameters requires additional work.

2. Redundancy for tests with a small number of test cases to verify.

3. It is often necessary to maintain an additional file with test cases.

A study by Sauce Labs showed that the use of parameterized test scripts allowed to
reduce the time required to maintain test scripts by 70% compared to test scripts without
parameterization, and therefore, in the event of changes in the system, much less effort
is needed to fix the test scripts [14].

Also, when developing test scripts, you should be guided by the 7 principles of test-
ing according to ISTQB:

1. Testing reduces the chance that software will have undetected defects, but even if
no defects are found, testing is not proof that the program is correct.

2. Testing all combinations of input data and prerequisites is impossible, except in
trivial cases. Rather than attempting exhaustive testing, risk analysis, test methods, and
priorities should be used to focus testing efforts.

3. To detect defects at an early stage, static and dynamic testing should begin as early
as possible in the software development life cycle. Early testing is sometimes called a
shift to the left. Testing early in the software development life cycle helps reduce or
eliminate costly changes.

4. A small number of modules usually contain most of the defects found during
pre-release testing or are responsible for most of the operational failures. Predicted
defect clusters and actual detected defect clusters during testing or operation are impor-
tant inputs to the risk analysis used to focus testing efforts (as outlined in principle 2).

5. If you repeat the same tests over and over again, these tests will eventually stop
revealing new defects. To detect new defects, it may be necessary to modify existing
tests and test data, as well as to write new tests.

6. Testing is done differently in different contexts. For example, safety-critical indus-
trial control software is tested differently than an e-commerce mobile application.

7. Some organizations expect that testers can perform all possible tests and find all
possible defects, but principles 2 and 1, respectively, say that this is not possible. Fur-
thermore, it is a mistake to expect that simply identifying and correcting a large number
of defects will ensure the success of the system. For example, thoroughly testing all
identified requirements and fixing all defects found may result in a system that is diffi-
cult to use, does not meet user needs and expectations, or is inferior to other competing
systems.

Development of test scripts is a time-consuming process that requires constant
improvement. However, using the right technologies and approaches will help ensure a
more efficient use of time and overall better software testing.

The second problem that needs attention is the lack of generally accepted standards
and norms for the development of test scenarios. Often, automators can have different
approaches to development, which leads to difficulties in maintaining such code by
other QA engineers. There are no universally defined rules that everyone must follow
in the process of developing test scripts, and therefore each person may have his own

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

| 9

implementation of a solution to this or that problem. This isn’t always a bad thing, but
it’s definitely worth spending time on when you’re starting to develop a test framework.

For example, the study «A Systematic Review of Test Automation Tools and Frame-
works for Web Applicationsy, published in the journal IEEE Access, showed that most
of the 50 analyzed tools and frameworks for automated testing of web applications use
their own testing methodologies, which can lead to inequality and causes the need for
possible retraining of existing specialists [15].

A good solution to this issue is to analyze existing standards from related fields, such
as development or manual testing, and develop standards based on them for a single
team, or a group of teams working on the same project. Such standards may include
rules for creating test scripts, rules for formatting code to make it look consistent, using
testing techniques, and unifying error reporting and tracking processes. All these actions
will help to ensure standardization of various test artifacts throughout the test life cycle,
and increase the understanding for all team members. For example, if the development
of tests takes place in the Python programming language, you can use PEPS. This is a
style guide for Python code that is recommended for use by developers of the language,
although it is not required. Many other programming languages have similar sets of
rules and guidelines. As for reporting, it all depends on how the reports are generated.
Allure Framework is very popular today. It is a flexible, lightweight, multilingual test
reporting tool that not only shows a very concise representation of what was tested in
the form of a web report, but also allows everyone involved in the development process
to extract the most useful information from day-to-day test execution.

But these solutions will not be able to fully exist without a process of review and
verification. After developing new test cases or parts of the framework, the written code
must be reviewed by at least one more automatizer from the team. This will help iden-
tify errors and correct them immediately, as well as maintain adherence to accepted
standards. This process is described by the ISTQB organization. There are four types of
reviews, from informal to the most standardized, and therefore it is important to under-
stand when and which review to apply, because this process takes the time of two or
more engineers at the same time.

1. Informal:

— can take the form of pair programming or a technical lead who reviews the design
and code;

— results can be documented;

— usefulness varies depending on the reviewers;

— the main goal: an inexpensive way to get a certain benefit;

2. Step-by-step introduction:

—a meeting led by the author;

— can take place in the form of scenarios, trial runs or group participation;

— open sessions;

— optional preparation of reviewers before the meeting;

— optional review report;

— main goals: learning, gaining understanding, finding flaws;

3. Technical review:

—a documented, defined defect detection process;

— under the guidance of a trained moderator;

— preparation of reviewers for the meeting;

— optional use of checklists;

— preparation of the review report;

| TaBpiticeknit HaykoBui BicHHK Ne 4

10|

— in practice it can vary from quite informal to very formal;

— main goals: discussion, decision-making, evaluation of alternatives, identification
of shortcomings, resolution of technical problems and verification of compliance with
specifications, plans, rules and standards.

4. Inspection:

—under the guidance of a trained moderator;

— usually conducted as an expert assessment;

— collection of metrics and various data;

— a formal process based on rules and checklists;

— defined input and output criteria for software product acceptance;

— preparation for the meeting;

— inspection report, including a list of conclusions;

— formal process of further actions;

—main goal: detection of defects.

To be successful in revue, you should follow the following rules:

— clearly define goals;

—fill in and use the documents accepted for the project;

— attract only those people who are really needed in order to get the maximum ben-
efit and not waste time;

— try to identify defects, but express them objectively;

— consider human issues and psychological aspects;

— apply appropriate review techniques and review in an atmosphere of trust;

— conduct trainings on assessment techniques;

— focus on learning and improving the process;

— follow the rules.

It is important to conduct regular code reviews of test scripts to identify inconsisten-
cies and deviations from standards. This requires using static code analyzers to detect
potential flaws. They find problems such as undefined variable access, inconsistent
interfaces between modules and components, unused or incorrectly declared varia-
bles, unreachable (dead) code, missing and erroneous logic (potentially infinite loops),
overly complex designs, violations programming standards, vulnerabilities in the secu-
rity system and violations of code syntax and software models. Static analysis must be
included in the overall testing process, because it covers and finds those problems that
the dynamic approach is unable to find.

From the company’s point of view, a possible solution is to conduct trainings and
seminars so that the automatizers become familiar with the common standards and tech-
niques used in the team. To solve the problem of the lack of standards and norms in
automation, it is necessary to establish common approaches and standardize possible
testing processes, conduct regular code checks and trainings for traffic jams [16].

An important issue to consider is the integration of test frameworks into the Con-
tinuous Integration / Continuous Development process. This process is important in
software development, because it allows you to automate the process of running tests
and ensure fast detection of errors. However, integration with test frameworks has some
complexities that need attention.

The lack of communication between the test framework and the version control sys-
tem leads to loss of time in the detection and correction of errors, since there is no pos-
sibility to automatically track changes in the code and the corresponding changes in the
tests. The solution to this problem is to use tools like Jenkins that support integration
with version control systems, for example Git, which is the most popular system. This

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

Ill

allows you to automatically run tests when the code changes and detect and fix defects
accordingly [17].

Lack of ability to run tests in different environments. Software is often designed to
run on different operating systems and with different configurations. A solution approach
is to use containers such as Docker. They allow you to create isolated environments for
running tests. This allows you to ensure the same conditions for running tests on differ-
ent environments and identify and fix problems in different configurations accordingly.
A container is a standard unit of software that packages code and all its dependencies so
that the program runs quickly and reliably, regardless of the system on which it is run.
A Docker container image is a lightweight, self-contained, executable software package
that includes everything needed to run an application: code, runtime, system tools, sys-
tem libraries, and configuration. The advantages of Docker containers in particular are
that they are standardized (Docker created an industry standard for containers so that
they can be moved anywhere), lightweight (containers use the core of the machine’s
operating system, and therefore do not need a separate operating system for each appli-
cation, which increases efficiency server workloads and reduces server and licensing
costs) and secure (containerized applications are more secure and Docker provides the
industry’s strongest isolation capabilities by default).

Testing takes a lot of time, so not being able to run tests in parallel can also be a prob-
lem, because it reduces the speed of software development and release. The solution is
to use parallel test execution tools like Selenium Grid or TestNG or similar. They make
it possible to run a larger number of tests at the same time, and accordingly reduce the
time spent on testing. It is important to remember that automatic tests must be developed
so that they do not depend on each other, because otherwise parallel running will not
bring the desired benefit [18].

Another important issue in the CI/CD process is the ability to save test results, as it
is difficult to track reports and identify problems. To solve this, you need to use test data
collection tools like JUnit or TestNG. These tools allow you to collect test information
such as execution time, status, and results and save it as a report. This allows for detailed
analysis of launch results.

Research by the DZone company showed that the use of CI/CD tools reduces the
duration of testing by 30-50%, increases the frequency of releasing new software ver-
sions, and reduces the number of errors detected during the testing phase [19]. This
proves that the integration of test frameworks into the CI/CD process can reduce the
duration of software development and release, increase product quality and reliability,
and reduce development and testing costs.

Sauce Labs also conducted a study that showed that using containers can reduce test-
ing time by an average of 25%, increase the number of tests that can be run in parallel,
provide greater test stability, and reduce system impact [20, 21].

Integrating test frameworks into the CI/CD process is an important stage of software
development that allows you to automate the testing process and ensure fast and effi-
cient error detection. CI/CD tools, containers for running tests, tools for running tests in
parallel and collecting data about their results can be used to solve problems that may
arise during the integration of test frameworks. Studies show that the use of such tools
can reduce testing time, increase the quality and reliability of software, and reduce costs
for its development and testing [22, 23].

Conclusions. There are a number of challenges in developing and using automated
testing frameworks that affect team performance, test quality, cost, and more. Auto-
mation has many benefits, but if the above issues are addressed during planning and

| TaBpiticeknit HaykoBui BicHHK Ne 4

12|

implementation, or, failing that, their impact on the project is minimized. This arti-
cle analyzed the most common problems and described ways to solve them based on
research by various companies and generally accepted development and testing stand-
ards. Although the needs of different projects are very different, technologies and
approaches to solving possible problems have been given that can help or suggest in
which direction to look for a solution to a particular issue. The methods described above
will help increase the efficiency and volume of automation, improve the quality of the
final product.

BIBLIOGRAPHY:

1. Hardik S. Software Testing Cost, 2022. URL: https://www.simform.com/blog/
software-testing-cost/ (nara 3sepaenns: 02.04.2023).

2. Dudekula M., Katam Reddy K., Kai P., Benefits and Limitations of Automated
Software Testing: Systematic Literature Review and Practitioner Survey, Apromaru-
3allisg TecTyBaHHA mporpamHoro 3abesnedeHHs (AST), 7-i1 MiKHapOOHHH ceMmiHap 3
nuTanb, 2012.

3. A. Contan, C. Dehelean and L. Miclea, «Test automation pyramid from theory
to practice», 018 Mixnaponna xoHdepenuis IEEE 3 aBromarn3artii, sikocTi Ta TecTy-
BaHHs, podotoTexHiku (AQTR), Kiyxx-Hamoka, PymyHis, 2018, c. 1-5, doi: 10.1109/
AQTR.2018.8402699.

4. Vogel-Heuser, B, Diedrich, C., Fay, A., Jeschke, S.,
Kowalewski, S., Wollschlaeger M. and Gohner P. (2014) Challenges for Software
Engineering in Automatlon XKypHan nporpaMHoi iHxkeHepii Ta 1oAaTkiB, 7, c. 440-451.
doi: 10.4236/jsea.2014.75041

5. Shukla, P., Patel, D., Challenges in Test Automation Framework Design and
Development. International Journal of Advanced Research in Computer Science and
Software Engineering, 2016, c. 67-71.

6. Khan, S. R., Ali, T., Khan, S., Issues and Challenges of Test Automation:
A Systematic Literature Review. Journal of Intelligent & Fuzzy Systems, 2018, c.
2097-2108.

7. Teepmoxinio A.O., Koporin [.C. EdextuBHIcTh (hyHKIIOHYBaHHS KOMIT IOTEPHUX
CUCTEM IIPU BUKOPUCTAHHI TEXHOJIOTIT OJOKJEHH 1 0a3 qaHHUX. TaBpilicbKuil HayKOBHI
BicHuK. Cepist: Texniuni Hayku, 2022, (6)

8. lpuk O.C. AHami3 1 0cOONMBOCTI MPOTPAMHOTO 3a0e3MeUeHHsI Ui KOHTPOIIO
Tpadiky. BicHuk XMenpHUIIBKOTO HallioHaJdbHOrO yHiBepcutery. Cepis: TexHiuni
Haykw, 2023, (1)

9. Hosiuenko €.0. AKTyanbHi 3acaiu CTBOPEHHS aNropuTMiB 00poOKH iHdopma-
i1 7SI IOTiCTUYHUX IIeHTpiB. TaBpilichkuit HaykoBHid BicHHK. Cepist: TexHiuHi HayKH,
2023 (1)

10. 3aifmeB €.0. Smart 3aco0u BU3HAYCHHS aBapiiiHUX CTaHIB y PO3MOTUIEHIX
CJIEKTPUYHUX Mepexax MicT. TaBpilicbkuii HaykoBUi BicHUK. Cepist: TexHiuHI HayKH,
2022, (5).

11. Humayun, M., Igbal, M. Z., The challenges and benefits of continuous integration
in software engineering. Information and Software Technology, 2017, c. 153-167.

12. Bajaj, S., & Singh, S. (2017). Automation testing challenges and solutions: A
review. International Journal of Computer Applications, 173(4), 23-28.

13. Onexkcanap IL., 3anypeHHs B marepHH NpoekTyBaHHA / 3a pend. M. Enbsipw,
Refactoring.Guru, 2021.

14. M. Leotta, D. Clerissi, F. Ricca and C. Spadaro, «Improving Test Suites
Maintainability with the Page Object Pattern: An Industrial Case Study,» 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation Workshops,
JIroxcemOypr, JIrokcemOypr, 2013, c. 108-113, doi: 10.1109/ICSTW.2013.19.

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

|13

15. Gunjan K., Page Object Model, URL: https://www.toolsqa.com/selenium-
webdriver/page-object-model/ (nara 3Bepuenns: 03.04.2023).

16. John Kent M. Sc, Test Automation: From Record / Playback to Frameworks,
2019, URL:https://citeseerx.ist.psu.edu/document?repid=rep 1 &type=pdf&doi=327a02
8cc53b0774671ee380e0e268e3ffae28b4 (nara 3pepHenns: 03.04.2023).

17. Sauce Labs, Parameterized Testing: A Practical Guide for Better Tests., URL:
https://saucelabs.com/resources/articles/parameterized-testing-a-practical-guide-for-
better-tests.(nara 3seprenns: 01.04.2023)

18. Nikolai Tillmann, Jonathan de Halleux, and Tao Xie, Parameterized unit testing:
32nd ACM/IEEE International Conference on Software Engineering — Volume 2 (ICSE
“10). Association for Computing Machinery, Heto-Hopk, CILIA, c. 483—484. doi: https://
doi.org/10.1145/1810295.1810441

19. Z. Ali, S. S. Awan, S. A. Khan, M. H. Shah, A Systematic Review of Test
Automation Tools and Frameworks for Web Applications, 2019

20. ISTQB Glossary, URL: https://glossary.istgb.org/en_US/search?term= (nara
3BepHeHHs: 30.03.2023).

21. Sheekha J, What is Version Control System, 2021, URL: https://www.toolsqa.
com/git/version-control-system/ (nara 3sepuenns: 07.04.2023).

22. Dzone, The State of Continuous Integration and Continuous Delivery:
2021 Report, 2021, URL: https://dzone.com/articles/ci-cd-tools-and-trends-survey-
2019-2020-results (mara 3BepaenHs: 30.03.2023).

23. SaucelLabs, The Benefits of Containers in Agile Testing, 2021, URL: https://
saucelabs.com/resources/white-papers/containerization-testing-landscape-report-2019
(mara 3BepHenHsi: 30.03.2023).

REFERENCES:

1. Hardik S. (2022) Software Testing Cost. URL: https://www.simform.com/blog/
software-testing-cost/ (data zvernennia: 02.04.2023).

2. Dudekula M., Katam Reddy K., Kai P. (2012) Benefits and Limitations of
Automated Software Testing: Systematic Literature Review and Practitioner Survey,
Avtomatyzatsiia testuvannia prohramnoho zabezpechennia (AST), 7-y mizhnarodnyi
seminar z pytan.

3. A. Contan, C. Dehelean and L. Miclea (2018) «Test automation pyramid from
theory to practice», 018 Mizhnarodna konferentsiia IEEE z avtomatyzatsii, yakosti ta
testuvannia, robototekhniky (AQTR), Kluzh-Napoka, Rumuniia, s. 1-5, doi: 10.1109/
AQTR.2018.8402699.

4. Vogel-Heuser, B., Diedrich, C., Fay. . Jeschke, S.,
Kowalewski, S. Wollschlaeger M. and Gohner P. (2014) Challenges for Software
Engineering in Automation. Zhurnal prohramnoi inzhenerii ta dodatkiv, 7, s. 440-451.
doi: 10.4236/jsea.2014.75041

5. Shukla, P., Patel, D. (2016) Challenges in Test Automation Framework Design
and Development. International Journal of Advanced Research in Computer Science
and Software Engineering, p. 67-71.

6. Khan, S. R., Ali, T., Khan, S. (2018) Issues and Challenges of Test Automation: A
Systematic Literature Review. Journal of Intelligent & Fuzzy Systems, p. 2097-2108.

7. Tverdokhlib A. O., Korotin D. S. (2022) Efektyvnist funktsionuvannia
kompiuternykh system pry vykorystanni tekhnolohii blokchein i baz dannykh. Tavriiskyi
naukovyi visnyk. Seriia: Tekhnichni nauky, no. 6.

8. Tsvyk O.S. (2023) Analiz i osoblyvosti prohramnoho zabezpechennia dlia
kontroliu trafiku. Visnyk Khmelnytskoho natsionalnoho universytetu. Seriia: Tekhnichni
nauky, no. 1.

9. Novichenko Ye.O. (2023) Aktualni zasady stvorennia alhorytmiv obrobky
informatsii dlia lohistychnykh tsentriv. Tavriiskyi naukovyi visnyk. Seriia: Tekhnichni
nauky, no. 1.

| TaBpiticeknit HaykoBui BicHHK Ne 4

14|

10. Zaitsev Ye.O. (2022) Smart zasoby vyznachennia avariinykh staniv u
rozpodilnykh elektrychnykh merezhakh mist. Tavriiskyi naukovyi visnyk. Seriia:
Tekhnichni nauky, no. 5.

11. Humayun, M., Igbal, M. Z. (2017) The challenges and benefits of continuous
integration in software engineering. Information and Software Technology, c. 153-167.

12. Bajaj, S., & Singh, S. (2017) Automation testing challenges and solutions: A
review. International Journal of Computer Applications, 173(4), 23-28.

13. Oleksandr Sh. (2021) Zanurennia v paterny proiektuvannia / za red. M. Elviry,
Refactoring.Guru.

14. M. Leotta, D. Clerissi, F. Ricca and C. Spadaro (2013) «Improving Test Suites
Maintainability with the Page Object Pattern: An Industrial Case Study,» 2013 IEEE
Sixth International Conference on Software Testing, Verification and Validation
Workshops, Liuksemburh, Liuksemburh, s. 108-113, doi: 10.1109/ICSTW.2013.19.

15. Gunjan K., Page Object Model. URL: https://www.toolsqa.com/selenium-
webdriver/page-object-model/ (data zvernennia: 03.04.2023).

16. JohnKent M. Sc. (2019) Test Automation: From Record/Playback to Frameworks.
URL: https://citeseerx.ist.psu.edu/document?repid=rep 1 &type=pdf&doi=327a028cc53
b0774671ee380e0e268e3ffae28b4 (data zvernennia: 03.04.2023).

17. Sauce Labs, Parameterized Testing: A Practical Guide for Better Tests., URL:
https://saucelabs.com/resources/articles/parameterized-testing-a-practical-guide-for-
better-tests.(data zvernennia: 01.04.2023)

18. Nikolai Tillmann, Jonathan de Halleux, and Tao Xie, Parameterized unit testing:
32nd ACM/IEEE International Conference on Software Engineering — Volume 2 (ICSE
10). Association for Computing Machinery, Niu-York, SShA, s. 483-484. doi: https://
doi.org/10.1145/1810295.1810441

19. Z. Ali, S. S. Awan, S. A. Khan, M. H. Shah (2019) A Systematic Review of Test
Automation Tools and Frameworks for Web Applications.

20. ISTQB Glossary, URL: https://glossary.istqb.org/en_US/search?term= (data
zvernennia: 30.03.2023).

21. Sheekha J. (2021) What is Version Control System, URL: https://www.toolsqa.
com/git/version-control-system/ (data zvernennia: 07.04.2023).

22. Dzone (2021) The State of Continuous Integration and Continuous Delivery:
2021 Report. URL: https://dzone.com/articles/ci-cd-tools-and-trends-survey-
2019-2020-results (data zvernennia: 30.03.2023).

23. SauceLabs (2021) The Benefits of Containers in Agile Testing. URL: https://
saucelabs.com/resources/white-papers/containerization-testing-landscape-report-2019
(data zvernennia: 30.03.2023).

