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Modern multi-component systems are characterized by the interaction of numerous internal 
components and external factors, which can exhibit both regular and chaotic behavior. Effective 
management of such systems requires tools capable of providing accurate state predictions 
under conditions of uncertainty and limited input data. This article explores the use of multi-
output regression models, which enable the consideration of interdependencies among system 
components, optimization of the parametric space, and improvement in prediction accuracy. 
Multi-output models allow simultaneous forecasting of several aspects of a system's state, 
reducing errors and enhancing the generalization ability of the models. The article provides 
a detailed examination of methods to improve such models, including minimization of noise 
influence, accounting for the temporal scales of component changes, optimization for small 
data samples, and increasing the interpretability of predictions. Approaches to addressing data 
scarcity are proposed, such as knowledge sharing between tasks and the use of generative models. 
Special attention is given to the challenges of applying multi-output models, including the risks 
of overfitting, conflicts between optimization objectives, and the impact of correlation biases. 
Strategies to mitigate these risks are discussed, including adapting multi-criteria optimization, 
parameter regularization, and developing hierarchical models that can account for system 
dynamics across different time scales. Ensemble approaches, which integrate the outputs of sub-
models into a unified architecture, are highlighted for their ability to enhance noise robustness, 
prediction accuracy, and model adaptability to changing conditions. The approaches proposed 
in the article have practical significance for automating decision-making processes in complex 
multi-component systems operating under high variability and data limitations. This provides 
a comprehensive framework for forecasting, contributing to more effective management of 
dynamic systems across various domains. Thus, the article makes a significant contribution to 
the development of methodologies for modeling complex systems, expanding the possibilities for 
their analysis and management.

Key words: multivariate regression models, multicomponent systems, system state prediction, 
ensemble approaches, regularization.

Симонов Д. І., Заiка Б. Ю., Симонов Є. Д. Мультивихідні регресійні моделі для 
управління багатокомпонентними динамічними системами

Сучасні багатокомпонентні системи визначаються взаємодією численних внутріш-
ніх компонентів і зовнішніх факторів, які можуть мати як регулярний, так і хаотич-
ний характер. Ефективне управління такими системами вимагає інструментів, здат-
них забезпечувати точне прогнозування стану за умов невизначеності та обмеженості 
вхідних даних. У статті досліджено використання мультивихідних регресійних моделей, 
що дозволяють враховувати взаємозалежності між компонентами системи, оптимізо-
вувати параметричний простір і підвищувати точність прогнозування. Мультивихідні 
моделі забезпечують одночасне прогнозування кількох аспектів стану системи, знижу-
ючи похибки та підвищуючи узагальнювальну здатність моделей. У статті детально 
розглянуто методи вдосконалення таких моделей, серед яких мінімізація впливу шуму, 
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врахування часових масштабів змін компонентів, оптимізація для малих вибірок даних, 
а також підвищення інтерпретованості прогнозів. Запропоновано підходи до роботи 
з малою кількістю даних, включаючи обмін знаннями між задачами та використання гене-
ративних моделей. Особливу увагу надано викликам, які виникають при застосуванні муль-
тивихідних моделей, зокрема ризику перенавчання, конфліктам між цілями оптимізації 
та впливу кореляційних упереджень. Розглянуто способи мінімізації цих ризиків, зокрема 
адаптацію багатокритеріальної оптимізації, регуляризацію параметрів, а також роз-
робку ієрархічних моделей, здатних враховувати динаміку систем на різних часових рів-
нях. Виділяються ансамблеві підходи, які дозволяють інтегрувати результати підмоделей 
у єдину архітектуру для підвищення стійкості до шуму, точності прогнозування та адап-
тивності моделей до змінних умов. Запропоновані у статті підходи мають практичну 
значущість для автоматизації процесу прийняття рішень у складних багатокомпонент-
них системах, що функціонують в умовах високої варіативності та обмеженості даних. 
Це забезпечує комплексний підхід до прогнозування, що сприяє ефективнішому управлінню 
динамічними системами у різних галузях. Таким чином, стаття робить значний внесок 
у розвиток методології моделювання складних систем і розширює можливості їх аналізу 
та управління.

Ключові слова: мультивихідні регресійні моделі, багатокомпонентні системи, прогно-
зування стану систем, ансамблеві підходи, регуляризація.

Introduction. Modern multi-component systems are characterised by a high level 
of complexity, dependence on numerous internal and external factors that can be both 
regular and chaotic. The study of such systems requires the use of effective modelling 
methods that can take into account the interaction of components and predict the behav-
iour of the system under uncertainty and limited data [1, 2].

One of the most promising approaches is the use of multi-output regression mod-
els that provide simultaneous forecasting of several aspects of the system state. These 
models allow taking into account correlations between components and aspects of the 
state, reduce the parameter space and optimise loss functions, increasing the accuracy 
and reliability of forecasts. However, the implementation of such models is complicated 
by certain issues, including the presence of anomalies and noise in the data, limited size 
of training samples, a variety of temporal changes in components, and the complexity 
of interpreting the results [3–5].

Overcoming these problems requires the introduction of innovative approaches 
to minimise risks, optimise resources and ensure model stability. Particular attention 
should be paid to methods of working with small samples, the use of common parame-
ters, knowledge transfer and generative models. This helps to improve the accuracy and 
adaptability of models to uncertainty, which is critical for the management, forecasting 
and optimisation of multi-component systems.

The relevance of the study is due to the growing need for modelling complex sys-
tems in such fields as engineering, economics and medicine. Traditional approaches to 
modelling are often ineffective due to the neglect of these aspects. The approaches pro-
posed in this article not only improve the accuracy of forecasts, but also provide greater 
flexibility and adaptability of models. The study of this topic has significant scientific 
and practical potential, contributing to the development of a methodology for modelling 
complex systems and algorithms for effective management of multicomponent systems 
in modern conditions.

Problem statement. Multicomponent systems are complex objects, the dynamics 
of which largely depends on the interaction of internal components ( ) ( ){ }iX t x t=  and 
the influence of external factors ( )U t . Prediction of the state of such systems is com-
plicated by a high level of noise ( )tΞ , different rates of changes in the state of com-
ponents, limited data sampling of certain aspects of the system state iy , which nega-
tively affects the quality and ability to interpret the results of modelling (forecasting), 
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respectively, reducing the likelihood of practical implementation of these models to 
automate the decision-making process on the functioning of multicomponent systems 
in real conditions.

The aim of the study. The purpose of this study is to develop and improve methods 
for minimising risks and increasing the accuracy of multi-output regression models for 
predicting the state of multi-component systems.

Analysis of recent research and publications. Recent research in the field of fore-
casting the state of multicomponent systems has paid considerable attention to the use 
of multi-output regression models that allow for the consideration of interdependencies 
between aspects of the system state. In particular, works [4] and [6] demonstrate the 
effectiveness of such models in problems with limited data, suggesting the use of com-
mon parameters and multitasking optimisation to improve the accuracy of forecasts. 
In addition, study [5] emphasises the importance of regularising model parameters to 
reduce the risk of overfitting and improve generalization.

The approaches to noise and uncertainty accounting, which are discussed in publica-
tions [7] and [8], are of considerable interest. These papers propose noise filtering meth-
ods, such as the Kalman filter, as well as adaptive regularisation that takes into account 
the signal-to-noise ratio (SNR) in the system components. The research results confirm 
that these methods provide a significant reduction in the impact of noise components 
and improve the accuracy of forecasting in conditions of high data variability.

Particular attention is drawn to the works devoted to modelling the dynamics of sys-
tems with different time scales. For example, in [9], a network with heterogeneous leaky 
integrator neurons was proposed to efficiently model and predict multiscale dynamics 
by adaptively selecting time scales during the training process. Other researchers, such 
as [10], use wavelet transform methods to extract time trends, which allows taking into 
account complex system dynamics at different time levels.

The problem of model interpretability is highlighted in studies [11–13], which focus 
on the use of SHAP (SHapley Additive Explanations) and LIME (Local Interpretable 
Model Agnostic Explanations) methods to analyse the relationships between system 
components. These approaches help to ensure the transparency of forecasts and increase 
the credibility of models in practical applications.

Despite significant progress in research, a number of challenges remain unresolved, 
including the integration of approaches to working with small samples, ensuring the 
adaptability of models to noise and time scales, and developing interpretability in highly 
complex systems. This determines the need for further research aimed at improving 
existing methods and developing new approaches to modelling multicomponent sys-
tems.

Presentation of the main research material. As noted above, the state of a multi-
component system can largely depend on external and internal chaotic factors that affect 
its dynamics. These factors may include irregular changes in input parameters, external 
factors, and internal noise inherent in many real systems. 

The state formula of a multicomponent system ( )Y t  can be represented in a general 
form through the state vector of system aspects that describe all important parameters of 
the multicomponent system [2, 15]:

( ) ( ) ( ) ( )
( )( )
( )( )
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(1)

where ( )ix t  is the vector of the state of the system components at time t; 
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iω  is the weighting coefficients of the system components ( )ix t ; 
jω  is the weighting coefficients of the system aspects ( )iy t .

The state vector of a system component ( )ix t  at time t can be defined as a system of 
iterative equations:

( ) ( ) ( )( ) ( ) ( )
1

1 , , , , ,
n

i i i ij j
j

x t f x t A g x t t U t t
=

 
+ = ⋅ Ξ 

 
∑                         (2)

where f  is a function describing the evolution of the i-th component of the system;
ijA  is an element of the influence matrix between components i and j; 

( )( ),jg x t t  is a function describing the influence of component j on i;
( )U t  is a vector of external factors that affect the state of the system; 
( )tΞ  is a vector of noise parameters for all components of the system, 

( ) ( ) ( ) ( )1 2, ,..., ;
T

nt t t tξ ξ ξΞ =   
( )i tξ  is a random variable.

Since it is intended to predict the state of a dynamic multicomponent system, it is 
advisable to consider a random variable ( )i tξ  taking into account time series statistics [16]:

( ) ( ) ( ),i i it t tξ σ ς= ⋅                                                           (3)
where ( )i tσ  is the time modulation of the intensity of changes in the state of the system 
component; ( ) ( )0,1 .i tς    

Equations (1) and (2) reflect not only the state of individual components, but also 
the differences between phase points, which complicates the analysis and forecasting 
of the system. Even a slight discrepancy in the input data can significantly affect the 
modelling results, especially if the system has lost its equilibrium state. One of the 
approaches to improve the quality of forecasting the state of multi-component systems 
is the multi-output approach. 

The advantages of using the multi-output approach include the following aspects:
1. Taking into account interdependencies between state aspects: a multi-output 

approach to predicting the state of a multicomponent system allows simultaneously 
taking into account interdependencies between different state aspects, which increases 
the accuracy and generalization of the model. For example, if there is a correlation 
between aspects, the regression function ( )if ⋅  is optimised simultaneously for all output 
variables, which reduces the probability of error compared to independent forecasting 
of each aspect iy .

If the aspects of the state 1 2, ,..., my y y  have a correlation ( ), ,i jy yρ 1, , 1, , ,i m j m i j= = ≠  
then joint forecasting within the framework of a multi-output model allows taking into 
account the mutual influence of the aspects and the components ( ),ix t  through the 
model parameters, which positively affects the value of the mean square error (MSE) 
of the forecast:

( )2

1 1

1 ˆ ,
m m

mult i i i
i i

MSE y y MSE
m = =

= − ≤∑ ∑                                    (4)

where ˆiy  is the predicted value of .iy
2. Reducing dimensionality and improving generalization: multi-output models use 

a single architecture to predict all aspects of the state, which allows for a reduction in 
the number of parameters compared to sequential (independent) models, meaning that 
the parameter space d can be reduced:

1
,

m

mult shared spec i
i

d d d d
=

= + ∑                                                 (5)
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where sharedd  – the parameters that are similar for all aspects ;iy

specd  – the parameters that take into account the individual characteristics of each 
aspect ;iy

id – the model parameters for predicting each aspect .iy
3. Improving prediction with limited data: in problems with a few observations 

for each aspect iy , a multi-output model allows knowledge to be transferred between 
aspects iy  using common parameters ( )ix t . This property is especially important when 
the state aspects share a similar nature or have similar patterns. In this case, the joint 
loss function is minimised:

( ) ( )
1

, , ,
m

i
i

L L X Y
=

Θ = Θ∑                                                    (6)

where ( ), ,iL X YΘ  is the loss function for the i-th aspect; 
Θ is a set of common model parameters that are optimised during training.
This allows aspects iy  with less data to gain useful information from other aspects 
, ,jy i j≠  by optimising shared parameters Θ .
4. Support for scenario analysis and decision-making: a multi-output model allows 

simulating the behaviour of the system in different scenarios simultaneously, evaluat-
ing the impact of changes in parameters or external factors on several aspects of the 
state iy . This approach increases the usefulness of the model in the tasks of managing 
a multi-component system. For example, if a system with two state aspects iy  (e.g., 
equilibrium state and system stability) is analysed, a multi-output model can evaluate 
the trade-off between these aspects when input parameters change [16, 17].

Thus, the use of a multi-output regression model to predict the state of a multicom-
ponent system allows for an integrated approach to forecasting, reducing the forecasting 
error, decreasing the dimensionality of the parameter space, and reducing the require-
ments for the size of the input data sample without losing the quality of forecasting.

Despite the numerous advantages of multi-output regression models, their use is 
associated with a number of potential risks. These risks can lead to model degradation, 
reduced efficiency and forecasting accuracy. The risks of using a multivariate approach 
include the following aspects:

1. Model degradation due to conflicting optimisation objectives: when simultane-
ously predicting several aspects of the model's state, several loss functions need to be 
optimised. If the state aspects have contradictory dependencies or different natures, 
the model may not generalise the data well enough. This occurs when minimising the 
loss function for one aspect worsens the forecast accuracy for another, meaning that 
the gradients of the loss functions ( )iLΘ∇ Θ  are oriented in different directions, thus 

( ) ( ) 0, : .i jL L y i jΘ Θ∇ Θ ⋅∇ Θ < ∃ ≠  In such cases, parameter optimisation can lead to local 
minimums that do not provide high accuracy for all aspects.

2. Excessive complexity of model training (overfitting): a multi-output model may 
have a significantly higher number of parameters compared to models that predict a 
single aspect. This creates a risk of overfitting, especially if the available data is limited. 
In such cases, the model demonstrates good accuracy on the training data, but poor gen-
eralisation on the test data [18].

3. Vulnerability to correlation bias: if there is a high correlation ( ),i jy yρ  between 
aspects of state iy , the model may use these dependencies for prediction without taking 
into account the fundamental cause and effect relationships. This leads to the construc-
tion of models that show degradation when conditions or data distribution change.

4. Failure to take into account different time scales: if aspects of the state change 
with different time scales (e.g., some aspects have fast dynamics and others have slow 
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dynamics), the multi-output model may not process them correctly [9, 10]. For example, 
if fast changes are described by the temporal modulation of the intensity of changes in 
the state of a system component ( )1 tσ , and slow changes are described by ( )2 tσ , then 
modelling the entire system without taking these frequencies into account can lead to 
the loss of important information, since the model cannot learn optimally on different 
time scales: ( ) ( )( )1 21 , , , .Y t F X t tσ σ+ =

5. The influence of the random component: if the noise component ( )tΞ  differs signif-
icantly between aspects of the state iy , the model may incorrectly estimate the weight of 
different aspects jω . This leads to a decrease in accuracy for aspects with a low signal-to- 
noise ratio (SNR) [3]. 

6. Difficulty in interpreting results: multi-output models can be difficult to interpret, 
especially if aspects of the state iy  interact through nonlinear dependencies. This makes 
it difficult to assess the contribution of individual system components ( )ix t  to the fore-
cast ˆiy . Without appropriate analysis tools, such as SHAP or LIME, it is difficult to 
verify the correctness of the results [11–13].

Solving these problems requires appropriate algorithmic and methodological 
approaches. Accordingly, to mitigate the risks associated with the use of multi-output 
regression models in predicting the state of a multicomponent system, appropriate meth-
odological approaches and algorithmic strategies should be applied. The key recom- 
mendations for minimising these risks include the following:

1. Resolving conflicting optimisation objectives: To resolve conflicts between loss 
functions, multicriteria optimisation approaches need to be adapted. One method is to 
use dynamic weighting of loss functions:

( ) [ ]
[ ]

1

,i m

j

i

i

t
L

L
α

=

Θ

Θ

∇

∇
=

∑



                                                    (7)

where ( )i tα  is the weighting factor for the i-th loss function, adapted depending on the 
size of the gradient.

This approach allows balancing the influence of loss functions in the learning pro-
cess, especially when combined with methods of sequential parameter optimisation:

( ) ( ) ( ) ( )( )
1

1 ,
m

l
l

it t Lt tη ω
=

ΘΘ ⋅∇+ = Θ − Θ∑                                   (8)

where ( )l tω  is a weighting factor that depends on the stage of training l.
2. Preventing correlation bias: To deal with correlation bias, it is necessary to sepa-

rate correlations between aspects and causal relationships. For this purpose, it is advis-
able to use methods that introduce a penalty for high correlations between forecasts:

( )( ) ( )ˆ ˆ, ,decor i ji
i j

L y yL t β ρ
≠

= Θ + ∑                                     (9)

where ρ  is the Pearson's correlation coefficient.
3. Taking into account different time scales: to model systems with different time 

scales, it is advisable to use hierarchical recurrent neural networks (HRNN) [19], which 
allow modelling dynamics at different levels:

( ) ( ), , ,i i low i higth h t h t= +                                         (10)

where ( ),i lowh t  is the hidden state of the low-level block, ( ) ( ) ( )( ), , 1 , ;i low low i lowh t f h t X t= −

( ),i higth t  is the hidden state of the high-level block, ( ) ( ) ( )( ), , ,1 , .i higt higt i higt i lowh t f h t h t= −
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4. Regularisation of model parameters: one of the most effective ways to avoid 
overfitting is regularisation, which reduces the complexity of the model by limiting the  
values of its parameters. In the case of multi-output models, regularisation can be applied 
to the parameters 

sΘ  and 
iΘ , where 

sΘ  represents the parameters that are common to all 
aspects iy  and 

iΘ  represents the parameters that are individual to the aspects iy . The 
loss function with additional regularisation components has the form:

( ) 2 2
1 22 2

1 1

ˆ , ,
n n

i i i i s i
i i

addL L y yϖ λ λ
= =

= ⋅ + Θ + Θ∑ ∑                          (11)

where 1 2,λ λ  are the hyperparameters of regularisation;
2

2
⋅  is the iϖ -norm of the model parameters;

iϖ  is the weighting factor, which implements the strategy of equality by the variance 
of the loss functions, 1

( )i
iVar L

ϖ = .
This approach reduces the impact of small samples on model complexity and 

improves generalization.
5. Noise regularisation: to minimise the impact of noise on the model parameters 

sΘ  та 
iΘ , it is advisable to use a specialised regularisation that takes into account the 

signal-to-noise ratio (SNR):

( )
2

2
1 1

ˆ , ,
i

n n

SNR i i i
i i X

L L y y σλ
σ

Ξ

= =

= +∑ ∑                                          (12)

where 2σΞ
 – noise variance; 

2
iXσ  – variance of the useful signal of the parameter ( )ix t  

for the aspect iy ;

( )
( )

2

2

ˆ ˆ, ,
2ˆ , ,1 ˆ ˆ,

2

i i i i

i i i

i i i i

y y y y
L y y

y y y y

δδ δ

δ


− − ∀∆ = − >

= 
 − ∀∆ = − ≤


  

where δ  – threshold value for abnormal values.
6. Transfer learning: transferring knowledge from similar tasks or aspects can signifi- 

cantly improve the quality of the model. In this approach, the model is pre-trained on 
a large sample of data for one or more aspects of the state and then adapted for aspects 
with a small sample [20]. Accordingly, the adapted model for aspects with a small sam-
ple will have the form:

( ) 2

2
1 1

ˆarg min , ,
n n

i i i
i i

L y y λ
′Θ

= =

′ ′Θ = + Θ −Θ∑ ∑                               (13)

where ( )
1

ˆarg min ,
m

j j j
j

L y y
Θ

=

Θ = ∑  is the training of the base model.

7. Reducing model complexity: pruning is an effective approach to reduce model 
complexity [21], which minimises the risk of overfitting and increases generalisability, 
especially for multi-output regression models. The main idea of pruning is to remove 
unimportant parameters

sΘ  and 
iΘ , or system components ( )iX t  that have a low impact 

on the forecasting results.
In a model with parameters [ ],s iΘ = Θ Θ , the impact of each parameter on the loss 

function 
iL  is analysed. Parameters whose contribution to the reduction iL  is insignifi-

cant are removed:

( )
2

2ˆ| , ,
j

i

j i i i
X

L y y σε η
σ

Ξ
Θ

  ′Θ = Θ ∈Θ ∇ > ∧ ≤ 
  

                          (14)
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where ε  is the threshold for determining the significance of the parameter; 
η  is the threshold for the noise to signal ratio.
Pruning is an appropriate method for improving the efficiency of multi-output 

regression models. Its application allows to reduce the complexity of the model, reduce 
the risk of overfitting and increase interpretability, while maintaining the accuracy of 
forecasting the state of a multicomponent system.

The generalisation of the considered methods of minimising risks and improving 
forecasting accuracy allows developing an ensemble of models that effectively takes 
into account the complexity of multicomponent systems. This approach is based on 
combining different methodologies into a single architecture to improve forecasting 
quality, noise immunity, and interpretability. Ensemble approaches based on a multi- 
output structure allow integrating the results of submodels into an ensemble average of 
forecasts:

( )( )1ˆ , ,
i

i i i j
j Mi

y M X t
M ∈

= Θ∑                                               (15)

where  is the set of submodels that take into account the aspect iy .
Integration of risk minimisation methods within the ensemble of models allows 

achieving high forecasting accuracy, reducing model complexity and increasing their 
resistance to noise factors. The proposed approach provides a comprehensive analysis 
of multicomponent systems and meets the modern requirements of scientific research 
aimed at modelling complex dynamic objects.

Results of an experimental study. To confirm the effectiveness of the proposed 
approaches related to the use of multi-output regression models in predicting the state 
of multicomponent dynamic systems, an experimental study was conducted on the open 
dataset “Energy Efficiency” [22]. The aim of the study was to empirically assess the 
accuracy, noise resistance, generalisability of the models and their interpretability in 
conditions of high data variability and different noise 

Comparison of prediction accuracy: to demonstrate the improvement in prediction 
accuracy using the proposed methods, three multi-output models were trained and com-
pared on the test set: Linear Regression, Ridge Regression (Linear Regression with reg-
ularization), and an ensemble model combining Linear Regression, Ridge Regression 
and RandomForestRegressor.

The Mean Squared Errors (MSEs) for two outputs are summarized in Table 1. The 
results indicate that applying regularization with Ridge Regression slightly reduces 
the prediction error compared to Linear Regression. Furthermore, the ensemble model 
achieves a significant reduction in error, showcasing its superior performance.

Figure 1 presents a plot comparing the predicted values to the real values. The 
ensemble model's predictions are the closest to the diagonal line, confirming that they 
align most closely with the real values. This observation further validates the effective-
ness of the ensemble approach.

Table 1
MSEs of the models for both outputs

Model name MSE Y1 MSE Y2 
Linear Regression 9.7296 10.2100
Ridge Regression 9.2142 9.9373
Ensemble model 4.3177 5.5751
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Fig. 1. Comparing the predicted values to the real

Noise vulnerability: To evaluate the resilience of the proposed approach to noise, 
the same models were trained on datasets with varying levels of added noise. The noise 
followed a normal distribution distribution 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎2), where 𝜎𝜎𝜎𝜎  , where distribution 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎2), where 𝜎𝜎𝜎𝜎   ranged from 0 to 0.6. The average Mean 
Squared Errors (MSEs) for both outputs of the trained models are presented in Figure 2. 

 

Fig. 2. Average MSE of models on datasets with varying noise level

The results demonstrate that, across all levels of noise, the ensemble approach con-
sistently achieved the lowest average MSE. This highlights its robustness, even as the 
noise level increased.

Generalization ability: to assess the generalization ability of the proposed approach, 
the models were trained using varying portions of the dataset, ranging from 10% to 90% 
of the total data. The average Mean Squared Error (MSE) for each model was measured 
on test set and is presented in Figure 3.

The results show that the ensemble model consistently achieves the lowest avera- 
ge MSE across all training set sizes. While the performance of Linear Regression and 
Ridge Regression improves as the training data size increases, their error rates remain 
higher compared to the ensemble model. Notably, the ensemble model maintains its 
superiority even when trained on smaller portions of the dataset, demonstrating its abil-
ity to generalize effectively to unseen data.
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Fig. 3. Influence of train set on model MSE

These results indicate that the ensemble approach is not only more accurate but also 
more robust when training data is limited. This highlights its potential for achieving 
reliable predictions while mitigating the risk of overfitting, regardless of the amount of 
training data available.

Model interpretability. SHAP value plots were generated to evaluate the interpreta-
bility of the ensemble model and compare it with other multi-output models, including 
Linear Regression and Ridge Regression, for both outputs Y1 and Y2. The results are 
displayed in Figure 4 and allow us to understand the importance of features and their 
impact on model predictions.

 

Fig. 4. SHAP values for each model and output
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The SHAP value plots reveal that features X4, X2, and X1 are the most influential 
for predicting both outputs Y1 and Y2 across all models. Ridge Regression, compared 
to Linear Regression, reduces the magnitude of SHAP values, demonstrating that regu- 
larization effectively limits the dominance of individual features and enhances model 
stability.

Although the SHAP values for the ensemble model narrower around zero than those 
for Linear Regression, they exhibit a wider distribution of feature impacts compared 
to Ridge Regression. This emphasizes the role of regularization in improving stability. 
Despite its more complex structure, the ensemble model remains as interpretable with 
SHAP as the simpler models, making it both powerful and transparent.

Sensitivity to parameters: to evaluate the sensitivity of the ensemble model to its 
parameters, a heatmap was constructed to illustrate the influence of λ and depth on the 
model's Mean Squared Error (MSE), as shown in Figure 5.

 

Fig. 5. Heatmap of the influence of λ and depth on MSE for the Ensemble model

The results demonstrate that the ensemble model maintains a high degree of stability 
across a wide range of λ and depth values. In most cases, the MSE remains consistently 
low, particularly as the depth increases, even when regularization strength (λ) varies 
significantly. While extreme values of λ (e.g., 1000) result in slightly higher MSE, the 
performance remains competitive and does not degrade below the levels observed pre-
viously in other models. Overall, the ensemble model achieves robust and stable per-
formance, balancing regularization and complexity effectively. The observed stability 
at lower depths confirms that pruning the model is a useful strategy to reduce computa-
tional cost while preserving accuracy.

Conclusions. This study demonstrates the effectiveness of multi-output regression 
models for predicting the state of multi-component systems under conditions of lim-
ited data and high variability. The proposed risk minimization methods, such as multi- 
objective optimization, parameter regularization, and consideration of different time 
scales, contribute to improving model robustness to noise and enhancing prediction 
accuracy. The use of ensemble approaches allows for the integration of sub-model 
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results, ensuring model adaptability to changing conditions and improving their genera- 
lization ability. Key challenges, such as conflicting optimization objectives, the risk of 
overfitting, and the complexity of interpretation, have been identified and require further 
research and refinement. The presented results have practical significance for the auto-
mation of complex system management across various fields, including engineering, 
economics, and medicine.
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