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Modern multi-component systems are characterized by the interaction of numerous internal
components and external factors, which can exhibit both regular and chaotic behavior. Effective
management of such systems requires tools capable of providing accurate state predictions
under conditions of uncertainty and limited input data. This article explores the use of multi-
output regression models, which enable the consideration of interdependencies among system
components, optimization of the parametric space, and improvement in prediction accuracy.
Multi-output models allow simultaneous forecasting of several aspects of a system's state,
reducing errors and enhancing the generalization ability of the models. The article provides
a detailed examination of methods to improve such models, including minimization of noise
influence, accounting for the temporal scales of component changes, optimization for small
data samples, and increasing the interpretability of predictions. Approaches to addressing data
scarcity are proposed, such as knowledge sharing between tasks and the use of generative models.
Special attention is given to the challenges of applying multi-output models, including the risks
of overfitting, conflicts between optimization objectives, and the impact of correlation biases.
Strategies to mitigate these risks are discussed, including adapting multi-criteria optimization,
parameter regularization, and developing hierarchical models that can account for system
dynamics across different time scales. Ensemble approaches, which integrate the outputs of sub-
models into a unified architecture, are highlighted for their ability to enhance noise robustness,
prediction accuracy, and model adaptability to changing conditions. The approaches proposed
in the article have practical significance for automating decision-making processes in complex
multi-component systems operating under high variability and data limitations. This provides
a comprehensive framework for forecasting, contributing to more effective management of
dynamic systems across various domains. Thus, the article makes a significant contribution to
the development of methodologies for modeling complex systems, expanding the possibilities for
their analysis and management.

Key words: multivariate regression models, multicomponent systems, system state prediction,
ensemble approaches, regularization.

Cumonoe /. L, 3aixa b. 10., Cumonoe €. /]. Mynemueuxioni pezpeciiini mooeni 01sa
YRPAGNIHHA 0a2anOKOMNOHEHMHUMU OUHAMIYHUMU CUCHEMAMU

Cyuacni bazamoKoMnOHeHMHT CUCTEMU BUSHAYAIONBCA B3AEMOOIEI0 YUCTEHHUX GHYMPIlU-
HIX KOMROHEHMI8 [ 308HIWHIX (hPaKkmopis, sKi MOXNCYMb Mamu K pe2yispHull, maxk i Xxaomuu-
Hull xapaxmep. Egpexmusne ynpaeninna maxumu cucmemamu uMazae iHcmpymenmis, 30am-
HUX 3a0e3ne4ygamu moyHe npocHO3VEAHHs CIAKy 3d YMO8 HeGU3HAYEHOCH ma 00MeICeHOCm
BXIOHUX OaHux. VY cmammi 00CniOHCeHO BUKOPUCTIAHHS MYTbIMUBUXIOHUX pecpeciliHux Mooeinel,
wo 003607A10Mb BPAXOBYEAMU 63AEMOIANEHCHOCT MIHNC KOMNOHEHMAMU CUCMEMU, ONMUMI30-
8yeamu napamempuyHuil npocmip i niOGUUY8AMU MOYHICIb NPOSHO3VEAHHS. Mynemusuxioui
Modeni 3a6e3neuyionms 00HOYACHEe NPOSHO3Y8ANHS KITbKOX ACHEeKMI6 CIaHy CUCMeMU, 3HUICY-
oYU NOXUOKU ma NIOSUWYIOYU Y3A2ATbHIOBANbHY 30amHicmb Modenel. Y cmammi 0emanibHO
PO3IAHYMO MemOooU BOOCKOHALEHHS MAKUX MoOenel, ceped AKUX MIHIMI3ayis 6nausy wymy,
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BPAXYBAHHS UACOBUX MACUMAOI8 3MIH KOMNOHEHmMI8, onmumizayis Oisi MAnux 6uOipoK OAHUX,
a makooic nIOGUUEHHsT THMEPNPEMOSaHOCMI NPOSHO3i8. 3anpononosano nioxoou 0o pobomu
3 MaN010 KiILKICMIO OaHUX, GKIIOUAIOUU OOMIH 3HAHHAMU MIJIC 3A0a4aMU Ma GUKOPUCTNANHS 2eHe-
pamugnux mooenetl. Ocobaugy ysazy HA0aHO GUKIUKAM, SIKI BUHUKAIONb NPU 3ACMOCY8AHNT MYIb-
MUBUXIOHUX MoOenell, 30KpeMda PU3UKY NepeHABYAHHS, KOHQIIKmam midxc yinaimu onmumizayii
ma enauUy KOpeAyiiuHUX ynepeoxcers. Posensinymo cnocoou MiHIMI3ayii yux pusuxie, 30Kpema
adanmayiio 6a2amokpumepiarbHoi onmumizayii, pecyiapuzayito nNapamempis, a maxoic pos-
POOKY Iepapxiunux mooenei, 30amHux 8paxosyeamu OUHAMIKY CUCMEM HA PI3HUX YACO8UX PI6-
HAX. Buoinsaiomscs ancamonesi nioxoou, siki 003601810mb iHmMe2pysamu pe3yibmamu niomooeneti
Y €Uy apximexmypy 0/ Ni0GUWeHHsL CMIKOCME 00 ULYMY, MOYHOCHE NPOSHO3Y8AHHSL MA A0an-
mueHocmi mooeneu 00 3MIHHUX YMO8. 3anponoroeani y cmammi nioxoou mMarwms npaKmuyHy
3HAUYWICMb 0151 A8MomMamu3ayil npoyecy NPUHAmMms piens y CKIaoHux 6a2amoKoMnoHenm-
HUX cucmemax, wjo QyHKYioHyoms @ ymoeax 6UcoKoi 6apiamueHocmi ma oomMedlcenocmi Oanux.
L]e 3abe3neuye komniekCHUil NiOXi0 00 NPOSHO3YEAHHS, U0 CRPUSIE ePeKMUSHIULOMY YNPABTIHHIO
OUHAMIYHUMY cucmemamu y pisnux eanysax. Taxum uunom, cmamms pooums 3HAYHUL 6HECOK
Y PO36UMOK MemoOO0N02ii MOOENOB8ANHS CKAAOHUX CUCEM | POSULUPIOE MONCTUBOCI IX AHANIZY
ma ynpaeainHs.

Kntouogi cnosa: mynomusuxioni pecpeciiini mooeni, 6a2amokoMnoHenmui cucmemil, npoeHo-
3V6aHHA CMAHY CUCTEM, AHCAMONe8l NiOXo0u, pe2yiapu3ayis.

Introduction. Modern multi-component systems are characterised by a high level
of complexity, dependence on numerous internal and external factors that can be both
regular and chaotic. The study of such systems requires the use of effective modelling
methods that can take into account the interaction of components and predict the behav-
iour of the system under uncertainty and limited data [1, 2].

One of the most promising approaches is the use of multi-output regression mod-
els that provide simultaneous forecasting of several aspects of the system state. These
models allow taking into account correlations between components and aspects of the
state, reduce the parameter space and optimise loss functions, increasing the accuracy
and reliability of forecasts. However, the implementation of such models is complicated
by certain issues, including the presence of anomalies and noise in the data, limited size
of training samples, a variety of temporal changes in components, and the complexity
of interpreting the results [3-5].

Overcoming these problems requires the introduction of innovative approaches
to minimise risks, optimise resources and ensure model stability. Particular attention
should be paid to methods of working with small samples, the use of common parame-
ters, knowledge transfer and generative models. This helps to improve the accuracy and
adaptability of models to uncertainty, which is critical for the management, forecasting
and optimisation of multi-component systems.

The relevance of the study is due to the growing need for modelling complex sys-
tems in such fields as engineering, economics and medicine. Traditional approaches to
modelling are often ineffective due to the neglect of these aspects. The approaches pro-
posed in this article not only improve the accuracy of forecasts, but also provide greater
flexibility and adaptability of models. The study of this topic has significant scientific
and practical potential, contributing to the development of a methodology for modelling
complex systems and algorithms for effective management of multicomponent systems
in modern conditions.

Problem statement. Multicomponent systems are complex objects, the dynamics
of which largely depends on the interaction of internal components X (¢)={x(¢)} and
the influence of external factors U(r). Prediction of the state of such systems is com-
plicated by a high level of noise Z(r), different rates of changes in the state of com-
ponents, limited data sampling of certain aspects of the system state y., which nega-
tively affects the quality and ability to interpret the results of modelling (forecasting),
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respectively, reducing the likelihood of practical implementation of these models to
automate the decision-making process on the functioning of multicomponent systems
in real conditions.

The aim of the study. The purpose of this study is to develop and improve methods
for minimising risks and increasing the accuracy of multi-output regression models for
predicting the state of multi-component systems.

Analysis of recent research and publications. Recent research in the field of fore-
casting the state of multicomponent systems has paid considerable attention to the use
of multi-output regression models that allow for the consideration of interdependencies
between aspects of the system state. In particular, works [4] and [6] demonstrate the
effectiveness of such models in problems with limited data, suggesting the use of com-
mon parameters and multitasking optimisation to improve the accuracy of forecasts.
In addition, study [5] emphasises the importance of regularising model parameters to
reduce the risk of overfitting and improve generalization.

The approaches to noise and uncertainty accounting, which are discussed in publica-
tions [7] and [8], are of considerable interest. These papers propose noise filtering meth-
ods, such as the Kalman filter, as well as adaptive regularisation that takes into account
the signal-to-noise ratio (SNR) in the system components. The research results confirm
that these methods provide a significant reduction in the impact of noise components
and improve the accuracy of forecasting in conditions of high data variability.

Particular attention is drawn to the works devoted to modelling the dynamics of sys-
tems with different time scales. For example, in [9], a network with heterogeneous leaky
integrator neurons was proposed to efficiently model and predict multiscale dynamics
by adaptively selecting time scales during the training process. Other researchers, such
as [10], use wavelet transform methods to extract time trends, which allows taking into
account complex system dynamics at different time levels.

The problem of model interpretability is highlighted in studies [11-13], which focus
on the use of SHAP (SHapley Additive Explanations) and LIME (Local Interpretable
Model Agnostic Explanations) methods to analyse the relationships between system
components. These approaches help to ensure the transparency of forecasts and increase
the credibility of models in practical applications.

Despite significant progress in research, a number of challenges remain unresolved,
including the integration of approaches to working with small samples, ensuring the
adaptability of models to noise and time scales, and developing interpretability in highly
complex systems. This determines the need for further research aimed at improving
existing methods and developing new approaches to modelling multicomponent sys-
tems.

Presentation of the main research material. As noted above, the state of a multi-
component system can largely depend on external and internal chaotic factors that affect
its dynamics. These factors may include irregular changes in input parameters, external
factors, and internal noise inherent in many real systems.

The state formula of a multicomponent system Y(¢) can be represented in a general
form through the state vector of system aspects that describe all important parameters of
the multicomponent system [2, 15]:

f,(xi(t),a)[,t) 1
Y(r)= I:yl (2).3,(2)ss 3, (t),a)j,t:IT I ('x[ (t),a)i,t) ) ( )
Fon(x:(2).00,.7)
where x, () is the vector of the state of the system components at time 7
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o, is the weighting coefficients of the system components 10k

w; is the weighting coefficients of the system aspects y, tz).

The state vector of a system component x, () at time ¢ can be defined as a system of
iterative equations:

)= 1[50 5 sl (w0200 @

where f is a function describing the evolution of the i-th component of the system;
4, is an element of the influence matrix between components i and j;
(x;(¢).t) is a function describing the influence of component j on i;
(¢ ) is a vector of external factors that affect the state of the system;
(r) is a vector of noise parameters for all components of the system,
(1) = [)1()52() RAGIE

() 1sa random variable.

Since it is intended to predict the state of a dynamic multicomponent system, it is
advisable to consider a random variable & (¢) taking into account time series statistics [16]:

&(t)=0:(1)-6.(1), 3)
where o, (1) is the time modulation of the intensity of changes in the state of the system
component; ¢, (1)~ N(0,1).

Equations (1) and (2) reflect not only the state of individual components, but also
the differences between phase points, which complicates the analysis and forecasting
of the system. Even a slight discrepancy in the input data can significantly affect the
modelling results, especially if the system has lost its equilibrium state. One of the
approaches to improve the quality of forecasting the state of multi-component systems
is the multi-output approach.

The advantages of using the multi-output approach include the following aspects:

1. Taking into account interdependencies between state aspects: a multi-output
approach to predicting the state of a multicomponent system allows simultaneously
taking into account interdependencies between different state aspects, which increases
the accuracy and generalization of the model. For example, if there is a correlation
between aspects, the regression function f;(-) is optimised simultaneously for all output
variables, which reduces the probability of error compared to independent forecasting
of each aspect ;.

If the aspects of the state Y;» 55+, have a correlation p(,.¥, ) j = Lm,j=1mi#j,
then joint forecasting within the framework of a multi-output model allows taking into
account the mutual influence of the aspects and the components x,(¢), through the
model parameters, which positively affects the value of the mean square error (MSE)
of the forecast:

[Il Q°°

m

%Z‘ 5) < iMSEi, )

mult -

where J, is the predicted value of y,.

2. Reducing dimensionality and improving generalization: multi-output models use
a single architecture to predict all aspects of the state, which allows for a reduction in
the number of parameters compared to sequential (independent) models, meaning that
the parameter space d can be reduced:

m

dmu/t = dshared + d.spec < zdl s (5)

i=1
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where d,,,., — the parameters that are similar for all aspects »;;
ds w the parameters that take into account the individual characteristics of each
aspectp Vis

dl. — the model parameters for predicting each aspect ;-

3. Improving prediction with limited data: in problems with a few observations
for each aspect ¥;, a multi-output model allows knowledge to be transferred between
aspects ¥; using common parameters x, (7). This property is especially important when
the state aspects share a similar nature or have similar patterns. In this case, the joint
loss function is minimised:

L(©)=3L(0.X.Y), (6)

i=1
where L(©,X.Y) is the loss function for the i-th aspect;

® is a set of common model parameters that are optimised during training.

This allows aspects . with less data to gain useful information from other aspects
Y;»1# J, by optimising shared parameters © .

4. Support for scenario analysis and decision-making: a multi-output model allows
simulating the behaviour of the system in different scenarios simultaneously, evaluat-
ing the impact of changes in parameters or external factors on several aspects of the
state y,. This approach increases the usefulness of the model in the tasks of managing
a multi-component system. For example, if a system with two state aspects V; (e.g.,
equilibrium state and system stability) is analysed, a multi-output model can evaluate
the trade-off between these aspects when input parameters change [16, 17].

Thus, the use of a multi-output regression model to predict the state of a multicom-
ponent system allows for an integrated approach to forecasting, reducing the forecasting
error, decreasing the dimensionality of the parameter space, and reducing the require-
ments for the size of the input data sample without losing the quality of forecasting.

Despite the numerous advantages of multi-output regression models, their use is
associated with a number of potential risks. These risks can lead to model degradation,
reduced efficiency and forecasting accuracy. The risks of using a multivariate approach
include the following aspects:

1. Model degradation due to conflicting optimisation objectives: when simultane-
ously predicting several aspects of the model's state, several loss functions need to be
optimised. If the state aspects have contradictory dependencies or different natures,
the model may not generalise the data well enough. This occurs when minimising the
loss function for one aspect worsens the forecast accuracy for another, meaning that
the gradients of the loss functions v e'-,-(®) are oriented in different directions, thus
VoL (®)-VoL,(0)<0,3y:i = j. In such cases, parameter optimisation can lead to local
minimums that do not provide high accuracy for all aspects.

2. Excessive complexity of model training (overfitting): a multi-output model may
have a significantly higher number of parameters compared to models that predict a
single aspect. This creates a risk of overfitting, especially if the available data is limited.
In such cases, the model demonstrates good accuracy on the training data, but poor gen-
eralisation on the test data [18].

3. Vulnerability to correlation bias: if there is a high correlation p( Vs y,) between
aspects of state y,, the model may use these dependencies for prediction without taking
into account the fundamental cause and effect relationships. This leads to the construc-
tion of models that show degradation when conditions or data distribution change.

4. Failure to take into account different time scales: if aspects of the state change
with different time scales (e.g., some aspects have fast dynamics and others have slow
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dynamics), the multi-output model may not process them correctly [9, 10]. For example,
if fast changes are described by the temporal modulation of the intensity of changes in
the state of a system component o, (t ) , and slow changes are described by o, (tP, then
modelling the entire system without taking these frequencies into account can lead to
the loss of important information, since the model cannot learn optimally on different
time scales: Y(t+l) =F(X(t),0'1,0'2,t).

5. The influence of the random component: if the noise component =(;) differs signif-
icantly between aspects of the state V;, the model may incorrectly estimate the weight of
different aspects w. . This leads to a decrease in accuracy for aspects with a low signal-to-
noise ratio (SNR) fS].

6. Difficulty in interpreting results: multi-output models can be difficult to interpret,
especially if aspects of the state y, interact through nonlinear dependencies. This makes
it difficult to assess the contribution of individual system components x, (¢) to the fore-
cast . Without appropriate analysis tools, such as SHAP or LIME, it is difficult to
verify the correctness of the results [11-13].

Solving these problems requires appropriate algorithmic and methodological
approaches. Accordingly, to mitigate the risks associated with the use of multi-output
regression models in predicting the state of a multicomponent system, appropriate meth-
odological approaches and algorithmic strategies should be applied. The key recom-
mendations for minimising these risks include the following:

1. Resolving conflicting optimisation objectives: To resolve conflicts between loss
functions, multicriteria optimisation approaches need to be adapted. One method is to
use dynamic weighting of loss functions:

()= Vo]
ZE[V L]

where o; (t) is the weighting factor for the i-th loss function, adapted depending on the
size of the gradient.

This approach allows balancing the influence of loss functions in the learning pro-
cess, especially when combined with methods of sequential parameter optimisation:

O(r+1)= 7]2(0, oL (0(1)), (®)

where @,(¢) is a weighting factor that depends on the stage of training /.

2. Preventing correlation bias: To deal with correlation bias, it is necessary to sepa-
rate correlations between aspects and causal relationships. For this purpose, it is advis-
able to use methods that introduce a penalty for high correlations between forecasts:

Ldecor = Lt(®(t))+ﬂzp(j\}z’j}])9 (9)
i#j
where p is the Pearson's correlation coefficient.

3. Taking into account different time scales: to model systems with different time
scales, it is advisable to use hierarchical recurrent neural networks (HRNN) [19], which
allow modelling dynamics at different levels:

h hz low( )+hzhlgt( ) (10)
where p,,(¢) is the hidden state of the low-level block, #,,, (1) = £,,, (B (1=1), X (1))
B, 1o (1) i the hidden state of the high-level block, 4, .., () = fse (e (1= 1)1, (1)).

(7
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4. Regularisation of model parameters: one of the most effective ways to avoid
overfitting is regularisation, which reduces the complexity of the model by limiting the
values of'its parameters. In the case of multi-output models, regularisation can be applied
to the parameters @ and @ , where @ represents the parameters that are common to all
aspects y and @, represents the parameters that are individual to the aspects »,. The
loss function with additional regularisation components has the form:

L= Zwi 'Li(j}i’yi)
P

where 4,4, are the hyperparameters of regularisation;

||} is the @,-norm of the model parameters;

@, is the weighting factor, which implements the strategy of equality by the variance
of the loss functions, @, =

(1D

Var(L,)

This approach reduces the impact of small samples on model complexity and
improves generalization.

5. Noise regularisation to minimise the impact of noise on the model parameters
0, Ta @, it is advisable to use a specialised regularisation that takes into account the
s1gna1 to-noise ratio (SNR):

n

2
Lo ZL (7.,) +AZ = (12)
X

where 52 — noise variance;
O'>2<,. — variance of the useful signal of the parameter x.( ) for the aspect y,;

S %(yi_yi) vVA=|9i_yi|S5 |

where § — threshold value for abnormal values.

6. Transfer learning: transferring knowledge from similar tasks or aspects can signifi-
cantly improve the quality of the model. In this approach, the model is pre-trained on
a large sample of data for one or more aspects of the state and then adapted for aspects
with a small sample [20]. Accordingly, the adapted model for aspects with a small sam-
ple will have the form:

©' =argmin Y L (7,.5,)+ 2 [0 -0, (13)
i=l i=1
where ®=argm(jnzn:Lj (3.»;) is the training of the base model.
=

7. Reducing model complexity: pruning is an effective approach to reduce model
complexity [21], which minimises the risk of overfitting and increases generalisability,
especially for multi-output regression models. The main idea of pruning is to remove
unimportant parameters 0, and ®, , or system components X, (¢) that have a low impact
on the forecasting results.

In a model with parameters ® =[0,0, ], the impact of each parameter on the loss
function [ is analysed. Parameters whose contribution to the reduction L, is insignifi-
cant are removed:

2
o= {@, €0||Vo L(5,.7)> A§—<n} (14)

Xi




Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

| 113

where ¢ is the threshold for determining the significance of the parameter;

7 is the threshold for the noise to signal ratio.

Pruning is an appropriate method for improving the efficiency of multi-output
regression models. Its application allows to reduce the complexity of the model, reduce
the risk of overfitting and increase interpretability, while maintaining the accuracy of
forecasting the state of a multicomponent system.

The generalisation of the considered methods of minimising risks and improving
forecasting accuracy allows developing an ensemble of models that effectively takes
into account the complexity of multicomponent systems. This approach is based on
combining different methodologies into a single architecture to improve forecasting
quality, noise immunity, and interpretability. Ensemble approaches based on a multi-
output structure allow integrating the results of submodels into an ensemble average of

forecasts: A 1
yf=—2M,~(Xf(f)a®,-)a (15)
|Mi JeM;
where is the set of submodels that take into account the aspect y;.

Integration of risk minimisation methods within the ensemble of models allows
achieving high forecasting accuracy, reducing model complexity and increasing their
resistance to noise factors. The proposed approach provides a comprehensive analysis
of multicomponent systems and meets the modern requirements of scientific research
aimed at modelling complex dynamic objects.

Results of an experimental study. To confirm the effectiveness of the proposed
approaches related to the use of multi-output regression models in predicting the state
of multicomponent dynamic systems, an experimental study was conducted on the open
dataset “Energy Efficiency” [22]. The aim of the study was to empirically assess the
accuracy, noise resistance, generalisability of the models and their interpretability in
conditions of high data variability and different noise

Comparison of prediction accuracy: to demonstrate the improvement in prediction
accuracy using the proposed methods, three multi-output models were trained and com-
pared on the test set: Linear Regression, Ridge Regression (Linear Regression with reg-
ularization), and an ensemble model combining Linear Regression, Ridge Regression
and RandomForestRegressor.

The Mean Squared Errors (MSEs) for two outputs are summarized in Table 1. The
results indicate that applying regularization with Ridge Regression slightly reduces
the prediction error compared to Linear Regression. Furthermore, the ensemble model
achieves a significant reduction in error, showcasing its superior performance.

Figure 1 presents a plot comparing the predicted values to the real values. The
ensemble model's predictions are the closest to the diagonal line, confirming that they
align most closely with the real values. This observation further validates the effective-
ness of the ensemble approach.

Table 1
MSEs of the models for both outputs
Model name MSE Y, MSEY,
Linear Regression 9.7296 10.2100
Ridge Regression 9.2142 9.9373
Ensemble model 43177 5.5751
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Fig. 1. Comparing the predicted values to the real

Noise vulnerability: To evaluate the resilience of the proposed approach to noise,
the same models were trained on datasets with varying levels of added noise. The noise
followed a normal distribution ~(0,52), where o ranged from 0 to 0.6. The average Mean
Squared Errors (MSEs) for both outputs of the trained models are presented in Figure 2.

Noise influence on model accuracy
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Fig. 2. Average MSE of models on datasets with varying noise level

The results demonstrate that, across all levels of noise, the ensemble approach con-
sistently achieved the lowest average MSE. This highlights its robustness, even as the
noise level increased.

Generalization ability: to assess the generalization ability of the proposed approach,
the models were trained using varying portions of the dataset, ranging from 10% to 90%
of the total data. The average Mean Squared Error (MSE) for each model was measured
on test set and is presented in Figure 3.

The results show that the ensemble model consistently achieves the lowest avera-
ge MSE across all training set sizes. While the performance of Linear Regression and
Ridge Regression improves as the training data size increases, their error rates remain
higher compared to the ensemble model. Notably, the ensemble model maintains its
superiority even when trained on smaller portions of the dataset, demonstrating its abil-
ity to generalize effectively to unseen data.
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Influence of train set on model MSE
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Fig. 3. Influence of train set on model MSE

These results indicate that the ensemble approach is not only more accurate but also
more robust when training data is limited. This highlights its potential for achieving
reliable predictions while mitigating the risk of overfitting, regardless of the amount of
training data available.

Model interpretability. SHAP value plots were generated to evaluate the interpreta-
bility of the ensemble model and compare it with other multi-output models, including
Linear Regression and Ridge Regression, for both outputs Y1 and Y2. The results are
displayed in Figure 4 and allow us to understand the importance of features and their
impact on model predictions.
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The SHAP value plots reveal that features X4, X2, and X1 are the most influential
for predicting both outputs Y1 and Y2 across all models. Ridge Regression, compared
to Linear Regression, reduces the magnitude of SHAP values, demonstrating that regu-
larization effectively limits the dominance of individual features and enhances model
stability.

Although the SHAP values for the ensemble model narrower around zero than those
for Linear Regression, they exhibit a wider distribution of feature impacts compared
to Ridge Regression. This emphasizes the role of regularization in improving stability.
Despite its more complex structure, the ensemble model remains as interpretable with
SHAP as the simpler models, making it both powerful and transparent.

Sensitivity to parameters: to evaluate the sensitivity of the ensemble model to its
parameters, a heatmap was constructed to illustrate the influence of A and depth on the
model's Mean Squared Error (MSE), as shown in Figure 5.

Heatmap of the influence of A and depth on MSE for the Ensemble

0.001

100.0 100

1000.0

Depth

Fig. 5. Heatmap of the influence of A and depth on MSE for the Ensemble model

The results demonstrate that the ensemble model maintains a high degree of stability
across a wide range of A and depth values. In most cases, the MSE remains consistently
low, particularly as the depth increases, even when regularization strength (L) varies
significantly. While extreme values of A (e.g., 1000) result in slightly higher MSE, the
performance remains competitive and does not degrade below the levels observed pre-
viously in other models. Overall, the ensemble model achieves robust and stable per-
formance, balancing regularization and complexity effectively. The observed stability
at lower depths confirms that pruning the model is a useful strategy to reduce computa-
tional cost while preserving accuracy.

Conclusions. This study demonstrates the effectiveness of multi-output regression
models for predicting the state of multi-component systems under conditions of lim-
ited data and high variability. The proposed risk minimization methods, such as multi-
objective optimization, parameter regularization, and consideration of different time
scales, contribute to improving model robustness to noise and enhancing prediction
accuracy. The use of ensemble approaches allows for the integration of sub-model
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results, ensuring model adaptability to changing conditions and improving their genera-
lization ability. Key challenges, such as conflicting optimization objectives, the risk of
overfitting, and the complexity of interpretation, have been identified and require further
research and refinement. The presented results have practical significance for the auto-
mation of complex system management across various fields, including engineering,
economics, and medicine.
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