Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii

47

UDC 004.773:004.738.52
DOI https://doi.org/10.32782/tnv-tech.2025.2.5

THE IMPACT OF SERVER-SIDE RENDERING ON SEO,
USER EXPERIENCE AND PERFORMANCE
IN WEB APPLICATIONS BUILT WITH ANGULAR

Borovskova Ye. A. — Master’s Degree, Software Engineer
AppsFlyer Ltd
ORCID ID: 0009-0008-5481-8090

Server-side rendering (SSR) and Lazy Loading are key technologies for improving web
application performance, user experience, and search engine optimisation. The study s relevance
is driven by the need to create fast, scalable, SEO-optimised web applications that meet modern
performance requirements. As one of the leading frameworks, Angular provides the technical basis
for implementing these technologies. However, their integration is accompanied by numerous
technical challenges that require analysis and development of appropriate solutions. The paper
aims to analyse the impact of server-side rendering and Lazy Loading on the performance
and usability of Angular web applications and develop practical recommendations for their
combination. To achieve this goal, the article uses experimental modelling methods, including
comparing performance indicators in real-world application conditions, an analytical method
for assessing the technical and architectural aspects of integration, and methods for comparative
analysis of scenarios with and without Lazy Loading. It has been proved that server-side
rendering allows the generation of static HTML on the server, which ensures fast page loading
and improves search engines’ content indexing. It has been found that the use of Lazy Loading
allows the reduction of the initial bundle size to 700 KB, which significantly reduces the first-
page load time to 1 second in a 4G network and 1.5 seconds in a 3G network. It has been
found that combining these technologies helps improve performance even on devices with low
technical characteristics while reducing the load on server resources. The study identifies
that the main challenges for implementation are the complexity of setting up server rendering
to work in the client environment and the need to integrate caching mechanisms and optimise
dynamic content. Recommendations for implementing hybrid approaches have been developed,
including using server-side rendering for critical page elements and Lazy Loading for loading
secondary components. It is recommended that caching mechanisms, performance monitoring
tools, and priority rendering strategies be used to optimise system performance. Prospects
for further research include the development of new approaches to integrating server-side
rendering and Lazy Loading, particularly in the field of dynamic content, studying their impact
on large distributed systems, and using artificial intelligence to automate rendering processes.
This opens up opportunities for creating more adaptive and efficient web applications that meet
the requirements of the modern digital environment.

Key words: server-side rendering, Lazy Loading, performance, search engine optimisation,
Angular, web applications, user experience.

bopoeckosa €. A. Bnnue cepsepnozo penoepunzy na SEO, kopucmysaybkuii 00ceio ma
npoOyKmueHicms y 6€0-3aCMoCyHKaAX, po3podienux 3a 0onomozor Angular

Cepeepruil penoepurne (SSR) ma Lazy Loading € karouosumu mexnonoziamu OJis nOKpa-
WjeHHs NPOOYKMUBHOCIMI, KOPUCHYBAYLKO20 00CEI0Y Ma NOUYKoeoi onmumizayii 6e6-3acmocyHt-
Kig. AkmyanvHicmes 00CHioNiCeH s 3yMOGLEHA NOMPEOOI0 CMEOPEHHS UBUOKUX, MACUIMADOBAHUX
ma SEO-onmumizo8aHux 6e0-3acmocyHKi6, uwjo 6i0nosioaroms Cy4acHUM SUMO2AM 00 AKOCMI
pobomu. Angular, sik 00un i3 NPoBIOHUX PpelmMeopKis, 3abesneuye mexHiuny 6azy O 6npPosa-
O0JCeHHs YUX MEXHONO02il, 0OHAK iX inmecpayis CYnpOBOONCYEMbCA YUCTEHHUMU MEXHIYHUMU
BUKTIUKAMU, SKI NOMPeOYIOMb AHALI3y Ma po3POOKU GIONOGIOHUX PileHb.

Memoro pobomu € ananiz éniugy cepsepHozo penoepuney ma Lazy Loading na npodykmue-
HiCMb [3pYUHICMb BUKOPUCAHHA 8e0-3aCcmMOCYHKI6 Angular, a makosic po3podKa npakmudHux
peKkomeHOayii Onis iX NOEOHAHHA. J[isl OOCACHEHH Memu SUKOPUCTNAHO MemOoOU eKCnepuMeH-
MATLHO20 MOOETIOBAHHS, WO BKII0YAIOTNb NOPIGHAHHS NOKAZHUKIE NPOOYKMUBHOCTI Y PealbHUX
ymosax pobomu 3aCmMOCYHKI8, AHANIMUYHUL MemoO 018 OYIHKU MEXHIYHUX | apXimeKmypHux
acnexkmie iHmezpayii, a MaxKoic Memoou NOPIGHAIbHO20 AHANIZY CYEHAPIIB 13 BUKOPUCIAHHAM
ma be3 euxopucmanns Lazy Loading.

TaBpiliceknit HaykoBHi BicHHK Ne 2

48I

Jloseoeno, wo cepsepruil pendepune 0o3gonse eenepysamu cmamuynutl HTML ua cepsepi,
wo 3abe3neuye weuoKe 3a6aHMaA3CeHH CMOPIHOK Ma NOKPAWYE THOEKCayilo KOHMeHnmy nouty-
Kogumu cucmemamu. Buaseneno, wo 3acmocysanns Lazy Loading oac 3moey 3menwumu poamip
nouamrosoeo 6anony 0o 700 Kb, ujo cymmeso ckopouye uac nepuiozo 3a8aHmaiceHusi Cmopinox
0o 1 cexynou 6 4G-mepeosici ma do 1,5 cexynou ¢ 3G-mepedxci. 3’5c06ano, wo nOEOHAHHS Yux
MEXHON02II CRPUSIE NIOBUUYEHHIO NPOOYKMUBHOCMI HABIMb HA NPUCMPOSIX I3 HUSKUMU MeXHIY-
HUMU XAPAKMepUCmuKamu, 00HOUACHO 3HUNCYIOUU HABAHMAICEHHSA HA CePBEPHI PeCyPCU.

YV x00i 0ocrioacennsn eusnaueno, wo OCHOBHUMU BUKIUKAMU OSL BNPOBAOICEHHS € CKAAO-
HICMb HANAWMYBAHHA CEPEEPHO20 PEHOEPUHZY Ol POOOMU 8 KIIEHMCLKOMY cepedosuiyi, Heoo-
XiOHicmb iHme2payii Mexanizmie Keuty8anus ma onmumizayii ounamiunozo kouwmenmy. Pozpo-
611eH0 pekomeHOayii w000 8NPOBAONCEHH CIOPUOHUX NIOX00i6, SKI BKIIOUAIOMb BUKOPUCHIAHHS
cepeepHozo pendepuncy Osk KpumudHux enemenmie cmopinku ma Lazy Loading onsa 3asanma-
JHCEHHA OPY2OPAOHUX KOMNOHEeHMi. Pexomen0oeano 3acmocogysamu Mexauizmu KeutyeaHHs,
IHCmMpyMenmu MOHIMopuH2y NPOOYKMUSHOCMI ma cmpamezii npiopumenHto2o peHoepuney s
onmumizayii pobomu cucmemi.

Iepcnexmusu nodanbuux 00CaiodHceHb nepeddbauarons po3pooKy HOBUX Nnioxodié 00 iHme-
epayii cepseprozo pendepunzy ma Lazy Loading, 3okpema y cghepi OuHamiunoeo KoHmeHny,
Q0CNIONCEHHsL IX GNIUBY HA BCIUKI PO3NOOLIEHI cucmemu ma 3aCmoCy8aHHs. UWMy4HO20 iHme-
aekmy 015 asmomamuzayii npoyecie pendepunzy. Lle siokpusae moxcaugocmi s CmMeopeHHs
Oinbuwt A0anmMueHUX i ehexmueHux 8eH-3aCmoCYHKI8, SKI 8ION0GIOAIOMb BUMO2AM CYUACHO2O
yugposoeo cepedosuiya.

Kniouoei cnosa: cepsepnuii penoepune, Lazy Loading, npodykmugnicms, noutykoea onmumi-
sayis, Angular, 6e0-3acmocyHKuU, KOPUCMY8aybKull 00CIo.

Problem statement. Server-side rendering, as one of the key technologies in web
development, has become widespread due to its advantages in ensuring fast page loading,
improving search engine optimisation, and increasing the usability of web applications.
However, using server-side rendering in combination with Angular raises several issues
related to the complexity of setting up the architecture, the need to optimise server
resources, and ensuring uninterrupted operation under high loads. This problem is of great
practical importance, as the efficiency of web applications used in various fields, including
e-commerce, educational platforms, and media resources, depends on its solution.

From a scientific point of view, the issue of optimising server-side rendering in
Angular projects requires a detailed study of its impact on performance and scalability.
An important task is to study the mechanisms that allow for achieving a balance
between system performance, end-user convenience, and compliance with modern
SEO standards. These aspects determine the competitiveness of web applications and,
therefore, are relevant for the further improvement of web development technologies.

Analysis of the latest research and publications. The impact of server-side
rendering on SEO, user experience, and performance in web applications developed
with Angular is a hot research topic covering indexing, performance, and resource
optimisation.

The study by K. Kowalczyk and T. Szandala compares single-page and multi-
page web apphcatlons regarding SEO. It pays attention to the key role of server-side
rendering in improving search engine indexing. The authors note that search algorithms
may partially or completely ignore dynamic pages without server-side rendering [1].
Angular Universal, as analysed by B. Borggreve, stands out as an effective tool for
server-side rendering. The study underscores its capacity to generate HTML on the
server prior to delivery, leading to faster rendering speeds, improved SEO performance,
and reduced loading times, which collectively enhance user engagement [2].

In the field of progressive web applications, M. Hajian’s research highlights the
synergy between these applications and server-side rendering. Angular’s architecture is
identified as a key factor in delivering not only exceptional performance but also crucial
SEO advantages, vital for optimising modern web solutions [3].

Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

|49

H.A.Jartarghar and his team turned their focus to the Next.js framework, presenting
an in-depth examination of its server-side rendering capabilities in conjunction with
React. Their research highlights its role in minimising page load times and improving
the user experience while discussing the challenges of integrating server-side rendering
into scalable projects [4].

Rendering speed and resource optimisation for large-scale web projects were
central themes in C.L.Phang’s comprehensive review. The study evaluates Angular’s
effectiveness in achieving these goals, making it a practical choice for developers
handling extensive web applications [5].

Optimisation techniques for page loading, such as lazy loading, were explored by
R.-M.Bara, C.A.Boiangiu, and C. Tudose. Their work demonstrates the advantages of
these methods for Angular applications, particularly in scenarios involving substantial
data volumes [6].

D.C.Sathyakumar explored scalable applications, with a specific emphasis on
resource optimisation strategies. The study introduces methods for leveraging server-
side rendering to ensure rapid and seamless content delivery while conserving server
resources [7].

Addressing enterprise-level requirements, V.De Sanctis examined the adaptation
of Angular Universal for reducing computing costs and enhancing user satisfaction.
The research underscores the value of server-side rendering in streamlining resource
allocation and boosting application performance [§].

A detailed exploration of modern rendering approaches was conducted by
A.Bampakos and M. Thompson, who provided practical insights into the implementation
of server-side rendering in real-world projects. Their findings emphasise the flexibility
of Angular Universal in addressing SEO and user experience challenges [9].

Dynamic web application development within the ASP.NET Core ecosystem was
the focus of O.Gumus and M. T.S.Ragupathi. Their work explores the integration of
server-side rendering with Angular, showcasing its ability to ensure cross-platform
compatibility and reduced loading times [10].

J. Wilken and S. Seshadri provided foundational insights into Angular’s capabilities
for server-side rendering. Their studies highlight the necessity of optimising web
applications to meet modern performance standards, focusing on speed and efficiency
[11, 12].

The comparative effectiveness of rendering methods within Next.js is analysed
by R.Hanafi, A.Haq, and N.Agustin. Their research reveals the substantial reduction
in content display delays achieved through server-side rendering, which significantly
enhances the user experience [13].

Practical applications of Angular Universal were detailed by A.Aristeidis and
M. Thompson. They showcase how this tool contributes to the development of high-
performance web applications capable of handling heavy traffic loads [14].

The intersection of server-side rendering and information security was explored by
K. Chyzhmar, O.Dniprov, O.Korotiuk, R.Shapoval, and O.Sydorenko. Their study
underlines the role of server rendering in mitigating risks and fortifying data protection
in web applications [15].

Legal implications of web technologies, particularly in the context of electronic
jurisdiction, were examined by O.Kostenko and V.Their analysis highlights the
performance and interaction benefits of server rendering, which holds significance for
legal and technical frameworks [16]. Thus, the reviewed studies confirm that server-side
rendering in Angular web applications helps to improve SEO, increase performance,

| TaBpiliceknit HaykoBHi BicHHK Ne 2

50|

and provide an effective user experience. Each work makes a unique contribution to
understanding these aspects, offering different approaches to solving the problems of
modern web applications.

Highlighting previously unsolved parts of the problem. Despite the achievements
in implementing server-side rendering in Angular applications, important aspects of
optimising its technical and architectural solutions to improve performance and ensure
SEO efficiency remain unresolved. In particular, the impact of server-side rendering on
the indexing of content by search engines and the specific benefits of this technology for
improving the ranking of web applications in search queries have not been sufficiently
studied.

Additional attention should be paid to the problems of combining server-side
rendering with Lazy Loading. This technology provides optimised resource loading, but
its integration into server-rendered Angular applications causes difficulties due to the
complexity of settings and the impact on the initial project structure. These challenges
are especially acute on devices with limited technical characteristics, where it is critical
to minimise page load times.

The technical challenges of integrating server-side rendering into Angular projects
remain relevant. These include compatibility issues with popular libraries, the lack of
unified approaches to settings, and limited tools to solve these problems.

The proposed research aims to analyse modern approaches to server-side rendering,
study its interaction with Lazy Loading, and develop practical recommendations
for their effective combination. This will reduce technical limitations, improve the
performance of web applications, and ensure their compliance with modern SEO and
usability standards.

The purpose of the article is to study the impact of server-side rendering on search
engine optimisation, user experience, and performance of web applications developed
using Angular and to develop recommendations for its effective use in the context of
modern web technology requirements.

Research objectives:

1. To analyse modern approaches to implementing server-side rendering in Angular
web applications, focusing on technical and architectural features and assessing its
impact on content indexing by search engines and SEO benefits.

2. Investigate the impact of Lazy Loading on the performance of Angular web
applications, in particular on reducing the initial bandwidth and page load time and
optimising resources for devices with low technical characteristics. Also, investigate the
challenges of integrating this technology with server-side rendering.

3. To develop practical recommendations for combining server-side rendering
and Lazy Loading in Angular web applications to improve performance, usability and
compliance with modern SEO standards, considering technical challenges.

Summary of the main material. Server-side rendering (SSR) plays a critical role
in enhancing the performance and scalability of Angular web applications. Various
modern approaches have been developed to address the challenges of implementing
SSR, including the integration of Angular Universal, hybrid rendering, and static site
generation (SSG). These methods not only optimise the rendering process but also cater
to specific use cases, such as dynamic content handling or improved initial page load
performance. Each approach requires distinct architectural and technical considerations,
such as infrastructure support or application structure analysis. Table 1 presents a
detailed comparison of these approaches, focusing on their implementation features,
benefits, and challenges, providing insights into their applicability in different scenarios.

Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii

I
| s

Table 1

Comparison of modern approaches to implementing server-side rendering
in Angular web applications

Approach

Implementation features

Benefits and challenges

Angular Universal

Node.js rendering,
integration with existing
Angular applications

Improved SEO and first load speed,
but requires additional server
infrastructure

Hybrid-rendering

Combining SSR and CSR
to optimise performance

Fast rendering and load adaptability,
but complex configuration

Priority rendering

Identify key elements for
rendering and downloading
priority data

Reduces server load, but requires
careful analysis of the web
application structure

(SSG)

Static site generation

Pre-render pages during
project build

Maximum download speed for static
content, but limited for dynamic
content

Source: compiled by the author based on [3, 9, 14].

In practice, server-side rendering is used to solve specific tasks in various scenarios.
In modern projects, Angular Universal allows you to quickly integrate SSR into existing
web applications by automating the creation of HTML pages. For example, large online
stores are actively using SSR to improve the indexing of products by search engines
and reduce page load times. Hybrid rendering has found applications in platforms
where fast interface response is critical, such as online learning platforms. However,
implementing server-side rendering requires significant resources to set up and maintain
the infrastructure, which is challenging for small and medium-sized companies.

In search engine optimization (SEO), server-side rendering (SSR) offers unique
advantages by providing static HTML to search engines and reducing page load times.
Unlike traditional client-side rendering, SSR enables faster indexing of dynamic content
and enhances the relevance of web pages in search engine results through optimized meta
descriptions, titles, and structured data. These features improve visibility, higher search
rankings, and better user engagement. Table 2 highlights the specific factors impacted
by SSR about SEO, showcasing its ability to optimize content indexing, reduce bounce
rates, and ensure an overall seamless user experience.

Table 2
The impact of server-side rendering on content indexing and the main benefits
for SEO
Factor The impact of server rendering Main benefits for SEO
Indexing of Providing static HTML pages to Increase the volume of indexed

content

Reduce the time of first display and
improve search engine rankings

dynamic content search engines
Generate pages on the server before
transferring them to the client
Generate optimised meta
descriptions, titles, and structured
data on the server
Provide quick access to the main
content of the page

Page load time

Increase relevance and visibility

Using meta tags . .
in search engines

Reduced bounce rate due to

User experience .
better user experience

Source: compiled by the author based on [2, 3, 5, 11].

| TaBpiliceknit HaykoBHi BicHHK Ne 2

52|

Server-side rendering is widely used today to ensure efficient content indexing in a
competitive search engine environment. Large platforms, such as e-commerce or media
resources, use server-side rendering to optimise their content for the requirements
of search algorithms. For example, by generating HTML on the server, companies
can include the necessary meta tags for each page, which makes it easier for search
engines to identify them [5]. In addition, the fast display of the pages’ main content
helps increase the time users spend on the site, which also positively impacts search
engine rankings. At the same time, the implementation of server-side rendering requires
significant resources to set up the infrastructure. However, a significant increase in SEO
efficiency and website visibility in search engines justifies these costs.

Lazy Loading is an important technology affecting modern web application
performance. Its principle is to load only those modules or components that the user
needs when performing a certain action, while delaying the Loading of the rest [6]. This
approach helps reduce the initial bundle’s size and significantly reduce page loading
time, which is especially important for devices with low technical characteristics or a
slow Internet connection.

To evaluate the effectiveness of Lazy Loading, an experiment was conducted on
a 10-page web application created using Angular. The study analysed two scenarios:
loading a web application without lazy loading and loading it with it. In each case, the
following indicators were evaluated: the size of the initial bundle, page loading time in
networks with different connection speeds, and device resource usage (Table 3).

Table 3
The impact of Lazy Loading on the performance of Angular web applications
Parameter No Lazy Loading With Lazy Loading
Initial size of the bundle ~2.5 MB for a website with | ~700 KB due to .downloadmg
10 pages only the required pages
Download time
(4G network) ~3 seconds ~1 second
Download time ~5 seconds with high ~1.5 seconds with minimal
(3G network) memory usage resource requirements
RAM usage ngh, espec1a11y. on delces Low, reducmg the load on
with low specifications devices

Source: author’s own development

Experimental results show that Lazy Loading significantly improves the performance
of Angular web applications. When using Lazy Loading, the size of the initial bundle is
reduced by almost four times, significantly reducing page load times. Using the example
of a 4G connection, the loading time was reduced from 3 seconds to 1 second, and
for a 3G connection, it was reduced from 5 seconds to 1.5 seconds. This is especially
important for users with low-end devices, as Lazy Loading significantly reduces the use
of RAM and CPU time.

Today, Lazy Loading is widely used in multi-page web applications to improve
performance. For example, in large online stores or information portals, this technology
allows you to load only the functionality that the user needs, avoiding wasted resources.
The Angular implementation, based on the dynamic Loading of modules through the
loadChildren directive, is an effective solution for optimising application performance.
This approach provides a better user experience and allows developers to create scalable,
productive systems that meet the requirements of the modern web environment.

Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

|53

Server-side rendering, implemented in Angular projects using Angular Universal, is
an effective approach to ensure fast page loading and improve content indexing by search
engines. However, this process is accompanied by several technical challenges that
affect web applications’ performance, stability, and flexibility. One of the key challenges
is the complexity of setting up server-side rendering, which requires additional efforts to
synchronise server and client code. Angular Universal requires developers to adapt the
application to a server-side environment, sometimes modifying existing components,
eliminating dependencies on browser APIs, and using specific libraries.

Another problem is processing dynamic content that depends on server requests. To
ensure correct operation, you need to set up caching or pre-rendering mechanisms in
advance, which increases the complexity of the project architecture. Another challenge
is ensuring rendering stability under high loads, as each request requires significant
computing resources on the server. This can be a critical issue for large, high-traffic
projects, as server-side rendering significantly increases the load on server resources
compared to client-side rendering.

Combining server-side rendering and Lazy Loading in Angular web applications
is a powerful approach to ensure high performance, usability, and compliance with
modern SEO standards [11]. Server-side rendering with Angular Universal allows you
to generate static HTML on the server, which speeds up the first Loading of pages and
ensures their availability for indexing by search engines. Lazy Loading, in turn, helps
to optimise the Loading of resources, allowing you to distribute the load during the
application’s operation and avoid loading unnecessary content at the initial stage.

The practical combination of these two approaches requires careful application
architecture planning. Initially, server-side rendering should be used to generate the
basic HTML code that includes key page elements such as titles, meta descriptions, and
visible content needed for quick display. This will ensure optimal conditions for SEO
and improve the first user experience. At the same time, Lazy Loading can be integrated
to dynamically load modules that are not critical for the first rendering, such as Ul
elements that will only be needed after user interaction.

An important element is to configure Angular routing to support Lazy Loading.
This involves using dynamic Loading of modules through the "loadChildren’ directive,
which avoids overloading the server and the client device. In addition, integrating
caching mechanisms for server-side rendering can significantly reduce the time it takes
to re-generate HTML, providing faster request processing. Using priority rendering
strategies also allows you to concentrate server resources on loading the page’s most
important elements.

Implementing this approach requires considering the specifics of client and server
environments. For example, you should ensure that server rendering is compatible
with dynamic elements that are loaded via Lazy Loading. This may involve using
performance monitoring tools to track load times and page correctness and conducting
testing to assess the impact on user experience. The combination of server-side rendering
and Lazy Loading allows you to create high-performance web applications that meet
modern SEO standards while providing fast access to content and optimal use of client
device resources.

Conclusions and prospects for further research. A study of the impact of server-
side rendering and Lazy Loading on the performance of Angular web applications has
shown that combining these technologies significantly improves page loading speed,
reduces the amount of resources used, and improves the quality of user experience.
Server-side rendering ensures the generation of HTML code on the server, which

| TaBpiliceknit HaykoBHi BicHHK Ne 2

54|

positively impacts SEO performance, particularly due to better indexing of content
by search engines. Lazy Loading, in turn, minimises the size of the initial bundle and
optimises the performance of applications on devices with low technical characteristics.

The study identified the main problems as the high complexity of setting up server
rendering for integration with client code, the need to optimise dynamic content, and
the limitation of server resources during high loads. Although Lazy Loading is effective
for performance, it requires careful routing configuration and analysis of module
dependencies to ensure stable operation.

Based on the results obtained, hybrid approaches that combine server-side rendering
and Lazy Loading are recommended to optimise the performance of Angular web
applications. Server content caching mechanisms and strategies for priority rendering
of key elements should be implemented to reduce loading time and resource costs.
Integrating performance monitoring tools to detect and resolve technical issues promptly
is also important.

Prospects for further research include the development of innovative architectural
approaches to improve the interaction of server rendering and Lazy Loading, particularly
in the field of dynamic content. A separate area of research is the analysis of the impact
of these technologies on the operation of large distributed systems with high loads, as
well as the study of the possibilities of using artificial intelligence to automate rendering
optimisation processes in web applications.

BIBLIOGRAPHY:

1. Kowalczyk K., Szandala T. Enhancing SEO in Single-Page Web Applications in
Contrast With Multi-Page Applications. /EEE Access. 2024. Vol. 12. P. 11597-11614.
DOI: https://doi.org/10.1109/ACCESS.2024.3355740 (date of access: 11.12.2024).

2. Borggreve B. Server-Side Enterprise Development with Angular: Use Angular
Universal to pre-render your web pages, improving SEO and application UX. Packt
Publishing Ltd, 2018. URL: https://books.google.com.ua/books?id=Wt18DwAAQBAJ
(date of access: 11.12.2024).

3. Hajian M. Progressive Web Apps with Angular. Apress Berkeley, CA. 2018.
URL: https:/link.springer.com/book/10.1007/978-1-4842-4448-7 (date of access:
11.12.2024).

4. Jartarghar H.A., Salanke G.R., A.R A.K., G.S S., Dalali S. React Apps with
Server-Side Rendering: Next.js. Journal of Telecommunication, Electronic and
Computer Engineering (JTEC). 2022. Vol. 14(4). P. 25-29. DOI: https://doi.org/
10.54554/jtec.2022.14.04.005 (date of access: 11.12.2024).

5. Phang C.L. Mastering Front-End Web Development (HTML, Bootstrap, CSS,
SEO, Cordova, SVG, ECMAScript, JavaScript, WebGL, Web Design and many
more). Chong Lip Phang, 2020. URL: https://books.google.com.ua/books?id=Y-
UJEAAAQBAJ (date of access: 11.12.2024).

6. Bara R.-M., Boiangiu C.A., Tudose C. Analysing the performance impacts of lazy
loading in web applications. Journal of Information Systems & Operations Management.
2024. Vol. 18(1). P. 1-15. URL.: https://web.rau.ro/websites/jisom/Vol.18%20No.1%20
-%202024/JISOM%2018.1.pdf#page=9 (date of access: 11.12.2024).

7. Sathyakumar D. C. Techniques and Practices for Optimizing Resources in Large
Scale Horizontal Web Applications That Deliver Cross Functional UX Components. 2024
IEEE International Conference on Electro Information Technology (elT). Eau Claire,
WI, USA, 2024. P. 468-479. DOI: https://doi.org/10.1109/eIT60633.2024.10609896
(date of access: 11.12.2024).

8. De Sanctis V. ASP.NET Core 5 and Angular: Full-stack Web Development with.
NET 5 and Angular 11. Packt Publishing Ltd, 2021. URL: https://books.google.com.ua/
books?id=DrOYEAAAQBAJ (date of access: 11.12.2024).

Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

|55

9. Bampakos A., Thompson M. Angular Projects: Build modern web apps by
exploring Angular 12 with 10 different projects and cutting-edge technologies. Packt
Publishing, 2021. URL: https://ieeexplore.iece.org/document/10163614 (date of access:
11.12.2024).

10. Gumus O., Ragupathi M.T.S. ASP.NET Core 2 Fundamentals: Build cross-
platform apps and dynamic web services with this server-side web application
framework. Packt Publishing Ltd, 2018. URL: https://books.google.com.ua/
books?id=9kZsDwAAQBAIJ (date of access: 11.12.2024).

11. Wilken J. Angular in Action. Simon and Schuster, 2018. URL:
https://books.google.com.ua/books?id=XTgzEAAAQBAJ (date of access: 11.12.2024).

12. Seshadri S. Angular: Up and Running: Learning Angular, Step by Step. O’Reilly
Media, Inc., 2018. URL: https://books.google.com.ua/books?id=CAFeDwAAQBAJ
(date of access: 11.12.2024).

13. Hanafi R., Haq A., Agustin N. Comparison of Web Page Rendering Methods
Based on Next.js Framework Using Page Loading Time Test. Teknika. 2024. Vol. 13(1).
P. 102—-108. URL: https://ejournal.ikado.ac.id/index.php/teknika/article/view/769 (date
of access: 11.12.2024).

14. Aristeidis B., Thompson M. Angular Projects: Build Modern Web Apps by
Exploring Angular 12 with 10 Different Projects and Cutting-Edge Technologies. Packt
Publishing Ltd, 2021. URL: https://books.google.com.ua/books?id=DrOYEAAAQBAJ
(date of access: 11.12.2024).

15. Chyzhmar K., Dniprov O., Korotiuk O., Shapoval R., Sydorenko O. State
Information Security as a Challenge of Information and Computer Technology
Development. Journal of Security and Sustainability Issues. 2020. Vol. 9(3).
P. 819-828 URL: https://www.researchgate.net/publication/340545387 STATE
INFORMATION_SECURITY AS A CHALLENGE OF INFORMATION AND
COMPUTER_TECHNOLOGY DEVELOPMENT (date of access: 11.12.2024).

16. Kostenko O., Furashev V. Genesis of Legal Regulation Web and the Model of
the Electronic Jurisdiction of the Metaverse. Bratislava Law Review. 2022. Vol. 6(2).
P. 21-36. DOL: https://doi.org/10.46282/blr.2022.6.2.316 (date of access: 11.12.2024).

REFERENCES:

1. Kowalczyk, K., & Szandala, T. (2024). Enhancing SEO in single-page web
applications in contrast with multi-page applications. /[EEE Access, 12, 11597-11614.
https://doi.org/10.1109/ACCESS.2024.3355740

2. Borggreve, B. (2018). Server-side enterprise development with Angular:
Use Angular Universal to pre-render your web pages, improving SEO and
application UX. Packt Publishing Ltd. Retrieved from https://books.google.com.ua/
books?id=Wt18DwWAAQBAJ

3. Hajian, M. (2018). Progressive web apps with Angular. Apress. https://doi.org/
10.1007/978-1-4842-4448-7

4. Jartarghar, H. A., Salanke, G. R., A. R, A. K., G. S, S., & Dalali, S. (2022).
React apps with server-side rendering: Next.js. Journal of Telecommunication,
Electronic and Computer Engineering (JTEC), 14(4), 25-29. https://doi.org/10.54554/
jtec.2022.14.04.005

5. Phang, C. L. (2020). Mastering front-end web development (HTML, Bootstrap,
CSS, SEO, Cordova, SVG, ECMAScript, JavaScript, WebGL, Web Design and many
more). Chong Lip Phang. Retrieved from https://books.google.com.ua/books?id=Y-
UJEAAAQBAJ

6. Bara, R.-M., Boiangiu, C. A., & Tudose, C. (2024). Analysing the performance
impacts of lazy loading in web applications. Journal of Information Systems &
Operations Management, 18(1), 1-15. Retrieved from https://web.rau.ro/websites/
jisom/Vol.18%20No0.1%20-%202024/JISOM%2018.1.pdf#page=9

| TaBpiliceknit HaykoBHi BicHHK Ne 2

56|

7. Sathyakumar, D. C. (2024). Techniques and practices for optimizing resources in
large scale horizontal web applications that deliver cross functional UX components.
2024 IEEE International Conference on Electro Information Technology (elT), 468—479.
https://doi.org/10.1109/eIT60633.2024.10609896

8. DeSanctis, V.(2021).ASP.NET Core5 andAngular: Full-stackwebdevelopmentwith.
NETS5 and Angular 11.PacktPublishing Ltd. Retrieved from https://books.google.com.ua/
books?1d=DrOYEAAAQBAIJ

9. Bampakos, A., & Thompson, M. (2021). Angular projects: Build modern web
apps by exploring Angular 12 with 10 different projects and cutting-edge technologies.
Packt Publishing Ltd. Retrieved from https://ieeexplore.ieee.org/document/10163614

10. Gumus, O., & Ragupathi, M. T. S. (2018). ASPNET Core 2 Fundamentals.: Build
cross-platform apps and dynamic web services with this server-side web application
framework. Packt Publishing Ltd. Retrieved from https://books.google.com.ua/
books?id=9kZsDwAAQBAJ

11. Wilken, J. (2018). Angular in action. Simon and Schuster. Retrieved from
https://books.google.com.ua/books?id=XTgzEAAAQBAIJ

12. Seshadri, S. (2018). Angular: Up and running: Learning Angular, step
by step. O’Reilly Media, Inc. Retrieved from https://books.google.com.ua/
books?1d=CAFeDwAAQBAJ

13. Hanafi, R., Haq, A., & Agustin, N. (2024). Comparison of web page rendering
methods based on Next.js framework using page loading time test. Teknika, 13(1),
102-108. Retrieved from https://ejournal.ikado.ac.id/index.php/teknika/article/
view/769

14. Aristeidis, B., & Thompson, M. (2021). Angular projects: Build modern
web apps by exploring Angular 12 with 10 different projects and cutting-edge
technologies. Packt Publishing Ltd. Retrieved from https://books.google.com.ua/
books?1d=DrOYEAAAQBAIJ

15. Chyzhmar, K., Dniprov, O., Korotiuk, O., Shapoval, R., & Sydorenko, O. (2020).
State information security as a challenge of information and computer technology
development. Journal of Security and Sustainability Issues, 9(3), 819-828.
https://www.researchgate.net/publication/340545387 STATE_INFORMATION _
SECURITY AS A CHALLENGE OF INFORMATION AND COMPUTER
TECHNOLOGY DEVELOPMENT

16. Kostenko, O., & Furashev, V. (2022). Genesis of legal regulation web and the
model of the electronic jurisdiction of the metaverse. Bratislava Law Review, 6(2),
21-36. https://doi.org/10.46282/blr.2022.6.2.316

